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Fig. 1. We present an approach to reconstruct and track 3D eyelids in real time. This technique is integrated into a face and eyeball tracking system to obtain
full face results with more detailed eye regions, again in real time (blue rectangles show closeups of the eye region). Our technique successfully reconstructs
both eyelid shapes and poses, for instance the shapes of eye contours, double-folds and bulges in the center-left result and the pose differences between the

two eyes in the right-most result.

State-of-the-art real-time face tracking systems still lack the ability to re-
alistically portray subtle details of various aspects of the face, particularly
the region surrounding the eyes. To improve this situation, we propose a
technique to reconstruct the 3D shape and motion of eyelids in real time. By
combining these results with the full facial expression and gaze direction,
our system generates complete face tracking sequences with more detailed
eye regions than existing solutions in real-time. To achieve this goal, we pro-
pose a generative eyelid model which decomposes eyelid variation into two
low-dimensional linear spaces which efficiently represent the shape and mo-
tion of eyelids. Then, we modify a holistically-nested DNN model to jointly
perform semantic eyelid edge detection and identification on images. Next,
we correspond vertices of the eyelid model to 2D image edges, and employ
polynomial curve fitting and a search scheme to handle incorrect and partial
edge detections. Finally, we use the correspondences in a 3D-to-2D edge
fitting scheme to reconstruct eyelid shape and pose. By integrating our fast
fitting method into a face tracking system, the estimated eyelid results are
seamlessly fused with the face and eyeball results in real time. Experiments
show that our technique applies to different human races, eyelid shapes, and
eyelid motions, and is robust to changes in head pose, expression and gaze
direction.
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1 INTRODUCTION

The human face is often the most important body part for a computer
to track as it conveys identity and emotion. Thus, facial capture and
animation is an important research topic in computer graphics, with
applications across movies, computer games, and online communi-
cations. Existing techniques reconstruct the face in real time using
consumer-level RGB or RGBD sensors, which makes obtaining facial
expression cheap and fast [Bouaziz et al. 2013; Cao et al. 2014a, 2013;
Li et al. 2013; Weise et al. 2011]. However, state-of-the-art methods
majorly focus on face skin regions and are still unable to realistically
convey many subtle expressions, such as the shape and motion of
the eyes—the window to the soul.

Many recent efforts have improved tracking for specific facial
organs, including eyes [Bérard et al. 2016, 2014], eyelids [Bermano
et al. 2015], lips [Edwards et al. 2016; Garrido et al. 2016], and teeth
[Wu et al. 2016]. These techniques produce high-quality modeling,
but are too complex to be applied in real-time. Recently, real-time
eyeball modeling and tracking has been achieved [Thies et al. 2016b;
Wang et al. 2016; Wen et al. 2016] in face tracking and animation
systems. However, this alone is often insufficient for realistic capture.
Modeling eyelid shape and motion, including folds and bulges, is
still required to generate realistic eye regions in real time.

It is difficult to model the shape and motion of local eye regions
because they are small and their motions involve heavy occlusions
in fold regions. This is unlike capturing the full facial expression
where surfaces are larger and less often occluded. Recent works have
used principle component analysis (PCA) to model the overall shape
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Fig. 2. Overview of our system. Note that the depth input is required by the face fitting technique, not our eyelid reconstruction. We show it here as it

contributes to the full face results shown in the figure.

of the eye region from 22 scans [Wood et al. 2016a,b]. However, eye
reconstruction should include subtle details like folds, eye contours,
and bulges, and real-time performance requires efficient estimation
of their motions. Shape from shading can be used to reconstruct
these details [Garrido et al. 2013; Richardson et al. 2016; Shi et al.
2014], but these systems are offline. In online systems, only mid-
scale facial features, like strong wrinkles, can be reconstructed [Cao
et al. 2015].

In this paper, we propose a system to reconstruct more detailed
eye regions in real time. First, we propose a high-fidelity generative
eyelid model with a set of dimensions which independently repre-
sent the shapes and motions of eye contours, folds, and bulges. The
model is a linear parametric model which efficiently reconstructs
eye regions via linear combinations. Second, we propose projective
fitting of semantic eye region edges to reconstruct eye regions in
real time. The semantic eye region edges are extracted by a multi-
channel holistically-nested edge detector, which jointly achieves
edge detection and identification. Third, we propose a polynomial
curve fitting technique and a correspondence updating technique to
handle incorrect and missing edge results, and to achieve real-time
performance of the projective fitting.

We list our specific contributions:

o Real-time reconstruction, tracking, and animation of realistic
human eyelid shape and motion. It is combined with face and
eyeball tracking to generate more complete and vivid result.

o A linear parametric eyelid model for human eyelid shape and
motion. It represents details and fits real-time applications.-We
will release the model to the community.

o A real-time semantic edge-based eyelid fitting solution. The
edge detector uses semantic information in a holistically-
nested DNN model. Detailed eyelids are reconstructed in real
time by a novel 3D-to-2D projective edge fitting algorithm.

1.1 Related Work

We propose a more detailed eyelid model to represent eyelid shape
and motion, and use this model to achieve real-time eyelid recon-
struction. As there is no previous work focusing on exactly the same
goal, we briefly survey models and reconstruction techniques for
general faces.

Face Models. To better model, track, and animate human faces,
generative 3D face models have been proposed which involve prior
knowledge of face geometries and motions. Through these models,
a 3D face can be represented and reconstructed in a low dimensional
space. Blanz and Vetter [1999] propose the first 3D morphable face
model from 200 face scans of different individuals with fixed neutral
expression. The morphable face model is further extended with
1000 face scans [Booth et al. 2016] and with both shape and tex-
ture [Paysan et al. 2009; Zhu et al. 2015]. Besides facial identity,
facial expression is also represented in a low dimensional space.
The blendshape model, which consists of a set of key expressions of
a particular facial identity, can be used to represent novel expres-
sions by linear combinations of blendshapes. Blendshapes can also
be generalized to novel identities by deformation transfer [Sum-
ner and Popovié¢ 2004] or example-based rigging [Li et al. 2010].
The functions of morphable model and blendshape model can also
be achieved in one model, called a multilinear model [Cao et al.
2014b; Vlasic et al. 2005], in which facial identity and expression
are independently modeled by two sets of parameters.

These models focus on the overall face, but are not designed for
specific face parts. This is crucial to attaining higher fidelity in face
modeling. In [Edwards et al. 2016], a 3D viseme model, called Jali,
is proposed to model the speech-related mouth motion. Olszewski
et al. [2016] use a new blendshape model with 29 shapes for mouth
poses to better model the mouth regions (5 of them for modeling
tongue motions). Recently, teeth have been modeled delicately with
a tooth row model and a local shape model for individual teeth [Wu
et al. 2016]. For eyeballs, a morphable model has been proposed
to achieve lightweight eye capture [Bérard et al. 2016]. For mod-
eling eyelid and eye regions, early works focused on the domain
of 2D images, which are well surveyed [Ruhland et al. 2014]. In
recent years, 3D eye region models have been proposed [Wood et al.
2016a,b], where a PCA model with 8 dimensions is derived to model
the overall shape of eye regions in a fully opened eye pose. However,
there is no 3D generative model that can represent eye shapes with
folds and bulges, let alone model the eyelid dynamics at the same
time.

Face Reconstruction. We can generate high quality face shapes
and dynamics with stereo [Beeler et al. 2011] and shape from shad-
ing (SfS) techniques [Garrido et al. 2013; Shi et al. 2014]. For eye
regions, delicate eyeball models are reconstructed by a complex
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Fig. 3. Folds and bulges with different poses. The bottom image is zoomed
in from the left side eye region. (a,b) shows that the fold disappears with

the eye-closing motion. (c,d) shows that the bulge disappears with the
upwards-looking motion.

capture and processing technique [Bérard et al. 2014]. An eyelid
morphable model is also proposed and used for image-based eye
region animation [Wood et al. 2017]. Neog et al. [2016] use a cubic
spline curve to build an eyelid shape model to learn the correlation
between eyeball direction and eyelid motion. Besides these large-
scale eyelid modeling and animation techniques, detailed dynamics
of eyelid folds are also modeled and reconstructed with multi-view
input and offline processing [Bermano et al. 2015]. None of these
techniques are real time, which limits their application.

Real-time 3D face tracking and animation was first demonstrated
by Weise et al. [2011] for a specific user with a RGBD sensor. This
work was extended by Li et al. [2013] and Bouaziz et al. [2013] to
remove the specific user requirement, and by Cao et al. [2013] to
require only RGB input. Later, Cao et al. [2014a] combined these
two extensions and reconstructed medium-scale face features like
strong wrinkles [Cao et al. 2015]. Occlusion handling can improve
the robustness of facial tracking systems [Hsieh et al. 2015; Liu
et al. 2015; Saito et al. 2016]. To improve realism, attention has
now turned to face parts. Wang et al. [2016] and Wen et al. [2016]
track eyeball rotations from RGB and RGBD input in real time.
In addition, following the works of real-time face reenactment on
RGBD and RGB inputs [Thies et al. 2015, 2016a], Thies et al. [2016b]
achieve gaze retargeting for face reenactment with virtual reality
(VR) headsets. This is similar to other research on VR-based face
tracking [Li et al. 2015; Olszewski et al. 2016]. All the aforementioned
real-time systems handle neither precise eyelid shapes nor motions.

1.2 Overview

Our system (fig. 2) first proposes two linear models for representing
the eyelid shape and pose in low dimensional subspaces (section 2).
Meanwhile, we train an improved holistically-nested network to
jointly achieve detection and identification of four semantic edges
in the eye regions (section 3). In the online tracking stage, with
the input color and depth sequence, we integrate our eyelid fitting
technique into a face and eyeball tracking system introduced by
Wen et al. [2016]. As the eyelid models have been pre-aligned to the
face models, we directly perform eyelid shape and pose tracking
(section 4) in the face tracking system. By iteratively solving the
optimizations, we recover the eyelid model parameters that best fit
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Fig. 4. Example bases in shape and pose rigs. (a) the basic eyelid mesh: béd
and ng‘o; (b-d) three shape bases with eye contour change, fold change
and bulge change on the right-side eye, blild, bZ‘f and bzis,d; (e-g) three pose
bases with downward motions on the inner part, the outer part and the

whole of the upper eyelid of the right-side eye, b;xﬁ, bsexP and bfo.

the four edges detected on the image. Finally, as our eyelid models
are generative, we can transfer the reconstructed eyelid motions to
a novel eyelid identity in real time.

2 LINEAR EYELID MODELS

For 3D face modeling, previous works use morphable models to rep-
resent the identity/shape changes of a face, and blendshape models
to represent expression/pose changes. Similarly, we also use two
linear models, with two sets of 3D mesh bases, to represent the
shape and pose variations of eyelids independently. In this manner,
users can control the shape and pose more freely. However, for faces,
the shape and pose correspond to totally different changes on face
geometry, while for eyelids, they may cause the same changes. For
example, different identities may or may not have folds and bulges,
and different poses (e.g., opened/closed, looking forwards/upwards)
may also cause the folds and bulges to appear and disappear, as
shown in fig. 3. Our two linear rigs share identical bases to handle
this issue.

2.1 Shape Linear Rig

Eyelids vary among genders, races, and ages. The characteristics of
an eyelid can be categorized as follows:

o Position stands for the relative positions of the eyes on a face.
It is represented by the vertical location of the eye pair and
the horizontal distance between the two eyes.

o Contour shape of the eye is affected by whether the eyes are
round or flat, wide or narrow in the horizontal direction,
upturned (the outer eye corner is higher than the inner eye
corner) or downturned (the outer eye corner is lower than
the inner eye corner).

o Double-fold is described by the distances between the fold and
the upper eyelid on different parts, and the strength of the
fold. Note that a single-fold eyelid, commonly seen in Asian
populations, is an extreme case of the double-fold eyelid. It
can be represented as a zero-strength double-fold eyelid.

o Bulge indicates the shape and strength of a bulge beneath an
eye. ‘No bulge’ is represented by a zero-strength bulge.

Based on the observations above, we asked an artist to build a set
of eyelids to cover the characteristic variations. We asked the artist
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Fig. 5. Detection and identification of the four semantic edges. Each color
corresponds to one kind of semantic edge (blue: fold edge; green: top edge;
red: bottom edge; purple: bulge edge). (a,b) examples with all four edges; (c)
an example without fold edge; (d) an example without bulge edge.

to first build a basic 3D eyelid mesh with a neutral identity in a neu-
tral, open pose, and then modify the basic mesh to generate a set of
new meshes. The artist edited these meshes to cover the eyelid space
as much as possible, based on her experience and photographic ref-
erence: https://imgur.com/a/gitnp. The difference between each new
mesh and the base mesh represents one dimension of one charac-
teristic, with the topology and the semantic meaning of the vertices
kept between all meshes. We use this set of eyelids to construct the
bases of our linear shape model:

B = (bi|k = 0,...,N'¥ - 1}, N'? = 29, (1)

where béd is a pair of neutral eyelids. Details of the bases in the
shape rig, along with the following pose rig, are described in the
appendix, and we show a few eyelid bases in fig. 4. Note that for
position, the two eyes always move together (upper or lower, closer
or farther), but for other characteristics, the two eyes could change
independently as they may be slightly different for most people.
Thus, our bases either relate to two eyes or to one eye.

With the shape bases and a set of blending weights, the eyelid
model of a specific user in a neutral, open pose is synthesized by:

Nid_1
id id (1,id id
En = bid + Z wid(pid — pid), ®)
k=1
where wid = (Wéd, w}’gid_l)T is the shape weight.

2.2 Pose Linear Rig

We build the pose rig by manually generating a set of bases to cover
all possible geometric changes caused by eyelid poses:

B = (b Pk = 0,.., NP — 1}, NP = 23, 3)

where ngP is the same as béd. Note that eyelid fold and bulge may
change with either shape or pose. Thus, there are some shared bases
for both shape and pose rigs to control the eyelid fold and bulge.
In practice, we first use the shape rig to estimate Ep for a partic-
ular user. However, since bg *P is different from E N> B€*P cannot
be directly used to construct the pose rig for En. To overcome this
drawback, we use deformation transfer [Sumner and Popovié¢ 2004]
to recover B¢*?’ by transferring the deformation gradient between
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Fig. 6. Comparisons of different solutions on edge detection and identifica-
tion. (a) input images; (b) results of four separate HEDs; (c) results of our
network with separate loss defined in eq. (8); (d) results of our network with
uniform loss defined in eq. (6); (e) ground truth. Note that as both (b) and
(c) separately consider the four edges, they always detect all the four edges
no matter whether or not the images contain fold edges or bulge edges.

ngp and biexp to En. Correspondingly, the pose rig is used as:
4 Nexp_l ’ 7
Ep=b* + Z w P (o - b P, (4)
k=1

Here, ’ stands for the transferred bases.

3 EYELID EDGE DETECTION AND IDENTIFICATION

We discuss how to detect and identify the four edges for eyelid
motion capture. The four edges have different semantic meanings
representing the double-fold, the upper eyelid, the lower eyelid and
the lower boundary of the bulge, respectively, as shown in fig. 5.
For simplification, we name the four edges as fold edge, top edge,
bottom edge and bulge edge correspondingly. Note that the top edge
and the bottom edge always exist in all facial images (coincident
with each other when the eye is closed), but the fold edge and the
bulge edge may not exist for some eye shapes or poses.

Detecting and identifying the four edges is not a trivial task. Re-
cently, DNN-based edge detection techniques have demonstrated
noticeable improvements in both detection accuracy and perfor-
mance. However, in this paper, we need to not only detect but also
distinguish the four edges to perform eyelid fitting, which is not
considered in previous edge detection techniques. A naive extension
to identify the four edges is to train four edge detectors, each of
which is individually trained to detect only one of the four edges.
However, for the four edges of each eye region, their relative po-
sitions, shapes, and motions are highly correlated. Training four
detectors separately ignores those correlations and does not achieve
good results, as shown in fig. 6(b).

3.1 Network

To exploit the correlation among the four edges, we modify the
holistically-nested edge detection (HED) proposed by Xie et al. [2015]
to train a uniform network that jointly detects and identifies the
four edges. We first formulate the edge detection and identifica-
tion problem as a multi-channel edge detection problem and then
propose a unified energy metric to jointly consider the four edges
together in the network training, which learns the correlations of
the four edges.


https://imgur.com/a/gitnp

The HED is based on the VGG-16 net [Simonyan and Zisserman
2014]. It connects five side-output layers to each stage of the VGG-
16 net. Each side-output layer generates an edge detection result
from the VGG features in the corresponding stage. Each result is
supervised by the ground-truth edge map, and all results are fused
together to generate the final output, which is also supervised by
the ground truth. In our system, since identifying the four edges
is required, we represent our output and also the ground truth as
four-channel binary edge maps, where 1 in each channel stands
for pixels on one of the four edges and 0 is used to label other
pixels. Comparing with the network in the original HED, we use
four convolution kernels, each corresponding to one channel in each
side-output layer and also in the final fused layer. In this manner, we
create a modified network that fits the representation of the output
and jointly achieves detection and identification of the four edges.

3.2 Loss

To train our network to learn optimal network parameters 60, we
formulate the loss function as follows:

M

arg mgin(afL(l//f(I’ 0).G) + as, (Y5, (1, 0), G)). (5)
k=1

In this function, I and G are the input eye region image and the
four-channel ground truth edge map. /¢ and s, stand for the fused
output and the side-outputs of the network. The loss function L
computes the pixel-wise sigmoid cross-entropy loss between an
output edge map and the ground truth. M represents the number of
side-outputs in the network (5 in our experiments). ay and as, are
the weight parameters for the fused loss and the side losses.

We define a unified loss L that integrates the detection and iden-
tification errors of the four edges together:

LY(1,0),G) = - " logPr(g; = 0|1;6)

JjeGs
4 A (6)
—(1- ﬂ)z Z logPr(g! = 1|1;6),
i=1jeGi
where
4
g=>l6k/al. ()
i=1

G is the set of pixels belonging to the ith edge in the ground truth,
and thus f stands for the ratio of the number of edge pixels in the
ground truth to the number of all pixels in the eye region image.
Gy is the union of all the four set of non-edge pixels in the ground
truth and each set is defined as Gi. Pr(g]‘: = 1|I; 0) stands for the
probability of pixel j belonging to the ith edge in an output, while
Pr(gj = 0|I; 0) stands for the probability of belonging to non-edges.
Pr = o(aj), where o is the sigmoid function and a; is the activation
value of pixel j in our DNN. With the definition of eq. (6), minimizing
eq. (5) leads to a network generating desired output. One example
of the input, ground truth, and the output of our network is shown
in fig. 6.
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There is a more straightforward way to define L by the individual
detection errors of the four edges:

4
Ly(1.0).G) = Y (~f' ), logPr(g} = 0II:0)

i=1 jeGt ®
—(1-BY Z logPr(g} = 1|I;6)),
jeGi
where
B =G| /16 ©)

However, in this definition, the four edges independently contribute
to different terms, thus their correlations are not considered in the
loss. As a consequence, compared with eq. (6), eq. (8) generates
incorrect results as shown in fig. 6(c).

3.3 Training

Our training set contains 194 eye region images from 48 identities
and the corresponding four-channel ground truth edge maps (man-
ually labeled). The images of 5 identities are recorded by ourselves
and another 3 are from the Eyediap database [Mora et al. 2014].
These 8 identities contribute 57 facial images, each of which pro-
vides two eye region images. For each identity, our data set contains
images with different eyelid poses. The pose changes are caused by
eyelid motions, as well as gaze motions, because eyelids change with
eyeball movements. The remaining 40 identities are collected from
the Internet, each of which has one image. These have no eyelid
pose change, and they contribute 80 training samples in total. Note
that the fold edge and the bulge edge do not exist in some images:
some subjects may not have double eyelids or eye bulges; the top
edge may disappear when subjects look downwards or close their
eyes. In these cases, we do not label fold edges or bulge edges.

In the training, the network is fine-tuned from an initialization of
the pre-trained VGG-16 net model, and we use a standard stochastic
gradient descent algorithm in the training. The parameters in the
training are set as follows: learning rate (le-6), momentum (0.9),
weight decay (0.0002). The weight parameters oy and a5, are all 1.

4 CURVE-BASED EYELID RECONSTRUCTION

We discuss how to reconstruct the 3D eyelids of a user with our
linear eyelid models and the four edges identified on each recorded
frame. The core idea is to estimate the optimal shape and pose
weights in our linear eyelid models, aiming to minimize the in-
consistency between the projected eyelid edges and the real eyelid
edges on the image. To construct the optimization problem, we need
to define the correspondences between the 3D eyelid model and
2D pixels. The edges of the eyelid model are defined by a set of
manually-labeled mesh vertices, called 3D eyelid landmarks. Their
corresponding pixels, called 2D eyelid landmarks, are extracted by
first fitting four polynomial curves to the detected edges on the
edge map (section 4.1), and then determining their locations on the
curves (section 4.2). With the correspondences, we minimize an
energy function that measures the distances between the projected
3D landmarks and their corresponding 2D landmarks (section 4.3).
Note that our eyelid reconstruction method is integrated into a
real-time face tracking system [Wen et al. 2016], which reconstructs
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Fig. 7. Results of curve fitting. (a,c) two input eye region images with de-
tected edges; (b,d) the corresponding curve fitting results.

(@) (b)

3D global poses, face identities and expressions, as well as the eye-
ball shapes and gaze directions, all in real time. Combining the 3D
eyelid generated by our technique, we recover more complete face
reconstruction results with more realistic eye regions.

4.1 Curve Fitting

Our goal of eyelid reconstruction is to fit the four eyelid edges
in our eyelid model to the corresponding edge detection results.
However, the output of the deep learning network is a pixel-wise
four-channel edge map which may label non-edge pixels as edges or
miss some true edge pixels. To calculate accurate correspondences in
this situation, we use the global information of the edges to extract
curves from the edge maps, and the corresponding 2D points of
the 3D eyelid landmarks are located on the curves. To be specific,
we fit four polynomial curves to the four channels of the edge
map by a weighted least square method which solves the following
minimization problem:

argmin " ol P(A.x) — u I (10)
keC

where A = {a;|i =0, ..., Ng—1} stands for the polynomial parameter
(N4 = 3 is sufficient for all the four curves), P is the polynomial
function, C contains all the pixels in a channel of the edge map
with intensity values larger than a threshold (set to 0.2 in all our
experiments). (xg, yx) is the 2D coordinates of pixel k on the edge
map, and the weight parameter wy is set to the pixel intensity of the
channel in the edge map, which indicates that higher possibility of
an edge pixel contributes more to the energy. An example of curve
fitting is shown in fig. 7.

4.2 Correspondence

We compute the locations of 2D eyelid landmarks corresponding to
the 3D eyelid edge vertices. First, as mentioned before, the 3D eyelid
edge vertices are manually labeled, but we only need to label the
vertices on by, as all bases share the same topology and semantic
meanings on vertices. To be specific, we select two end vertices for
each of the four eyelid edges (the upper eyelid and the low eyelid
share the same end points). Then, all vertices in-between the two
endpoints are selected as 3D landmarks.

One difficulty in finding the correspondences is that, due to the
impact of lighting or head poses, we may not detect the whole edge
on the image. For the top and bottom edges, as their end points
always overlap, we identify the end points by calculating the inter-
section points of the polynomial curves. Next, for the in-between
pixels, we use the curve length to determine the corresponding
points (shown in fig. 8(b)). A straightforward solution here is to
keep the relative curve lengths on the 3D eyelid model, determined
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Fig. 8. Correspondences of different edges. (a) input eye region image; (b)
correspondences of the top and bottom edges; (c) correspondences of the
bulge edge. Blue points indicate the projected vertices of the 3D eyelid model,
and the red points indicate their corresponding points on the polynomial
curves. In (b), the end points on the 3D model always match the end points
on the 2D curve. In (c), the correspondences are obtained by searching along
the projected y axis of the head mesh, and some vertices may not find
correspondences on the image.

(b) ()

by the selected vertices, the same as the relative curve lengths on
the 2D image, determined by the extracted pixels on the polynomial
curves:

sx (v, vp—1) = C(up, up—1),t = 1,...,T — 1, (11)

where s is a scaling factor {(ur—1, up)/€(vr—-1,v0), I represents the
curve length between two points (in 2D or 3D space), v; denotes a
3D vertex, u; denotes its corresponding pixel on 2D image and T is
the number of 3D landmarks on the edge. However, this solution
does not work well when the 3D vertices are not on the same depth
layer to the camera. In this case, vertices with uniform intervals
should be ideally projected onto 2D locations with nonuniform
intervals. To overcome this drawback, we modify eq. (11) to set the
following constraint:

sx l(m(vy), m(vs—1)) = C(ug,up—1),t =1,..., T — 1, (12)

where 7 denotes the 3D to 2D projection. In this case, curve length
is always calculated in 2D space, and thus it holds in all situations.
However, since different head poses may cause very different pro-
jective curve lengths in 2D space, the left side of eq. (12) should
be calculated in the optimization on each frame, rather than us-
ing a pre-computation for eq. (11). Therefore, in our method, the
correspondences are dynamically updated in the optimization.

To estimate u; satisfying eq. (12), we need to solve a nonlinear
optimization problem, as the 2D curve is a three-order polynomial
curve. To achieve real-time performance, we propose an approxi-
mate solver. We first calculate all £(r(v;), 7(vs—1)) in the current
iteration. Then, we densely sample some points on the polynomial
curve by x, € [x]’c”i”,xl’cnax] (xl’cni" and x;"%* denote the mini-
mum and maximum x value in all pixels in C.), and calculate the
2D distance D(up,up-1) between each pair of consecutive points
up = (xp, P(A,xp)) and up—1 = (xp-1, P(A, xp-1)). Finally, for a
desired u;, we use binary search to recover Up. that best satisfies:

p*
s % L(n(vr), m(v0)) = ) Dlttp, ttp-1). (13)
p=1

From our experiments, this binary search-based method achieves
real-time performance and satisfying fitting results.

For fold and bulge edges, we cannot use the described approach to
calculate correspondences, as the endpoints cannot be located when



(b)

(e

Fig. 9. Results in our fitting system. (a) First input frame with neutral
expression; (b) identity fitting result provided by [Wen et al. 2016]; (c) result
of our system with eyelid fitting; (d) One input frame in the sequence; (e)
the corresponding result of this frame.

only partial edges on the image are detected. In practice, in each
iteration, we first project the labeled vertices of the fold and bulge
onto the recorded image and then use the curve points with the
same y coordinate as their corresponding points. Note that this is
the y coordinate in the head model space projected onto image space.
Directly using the image space y coordinate will involve incorrect
correspondences when the face undergoes in-plane rotation. Also,
some vertices may not have correspondences if there are no points
on the polynomial curve with the same y coordinates, but the whole
edge can still be reconstructed from our eyelid model and the partial
correspondences. Fig. 8(c) illustrates the correspondences for a bulge
edge.

4.3 Eyelid Reconstruction

We discuss the estimation of eyelid shape and pose weights in our
real-time tracking system. The weights {w} are obtained by minimiz-
ing the distances between the projections of the 3D eyelid landmarks
and their corresponding 2D eyelid landmarks, formulated as:

4
argmhi,nz Z all| x(vi(w,B)) —ul |2, (14)
L teS?
where i indicates different edges, S’ contains all the correspondence
pairs of edge i and ag is the weight of the correspondence, which is
set to 2 for end points (t = 0,T — 1) and 1 for others.

In general, the fitting of eyelid shape and pose is integrated into
the face fitting pipeline [Wen et al. 2016] by following the face iden-
tity and expression fitting in each iteration. To achieve integration,
we also need to match our 3D eyelid mesh model to the multilinear
model used by Wen et al. [2016]. Otherwise, the face result and the
eyelid result cannot be fused together to recover one consistent
result. First, we manually select the eyelid boundary on the multi-
linear model. Then we apply Laplacian deformation [Sorkine et al.
2004] to deform our eyelid bases to fit the multilinear bases. Thus
our eyelid meshes can be seamlessly connected to the face meshes,
and the eyelid fitting can seamlessly follow face fitting to generate
more realistic results on eye regions.

In the first frame of a sequence, where users are asked to keep a
neutral expression, we perform eyelid shape fitting after face identity
fitting in each iteration. Here, the shape rig B'? is used in eq. (14)
and the correspondences are updated by the method in section 4.2.
Then, the optimal wid is estimated and fixed, and the eyelid model
En with neutral expression is synthesized. Next, we construct the
user-specific eyelid pose rig B¢*? based on Ep, as described in
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section 2.2. After the first frame, eyelid pose fitting is iteratively
performed with head pose estimation and facial expression fitting on
the following frames in real time, i.e., wé*? is estimated using B¢*?.
Finally, as the eyeball performance is also reconstructed by Wen
et al. [2016], we recover a near-complete face reconstruction with
realistic eye regions (but without teeth and detailed lip motions).
Some results of this procedure are shown in fig. 9.

5 EXPERIMENTS

We discuss experiments performed using the described approach.
First, since we add a new eyelid tracking module to an existing
real-time face tracking system, the performance of the new system
is discussed. Second, as the eyelid linear models and the four edge
detection are our key techniques to achieve real-time eyelid tracking,
we evaluate the two techniques respectively. Third, we compare our
system with the existing system. As we generate more details in
the eye regions, our results are more vivid and realistic. Next, to
demonstrate the power of our whole technique, we show our results
on various eyelid shapes and poses and we show eyelid motion
transfer results for facial animation applications. Finally, we discuss
the limitations of our techniques.

Performance. Our system runs on a computer with a 3.60 GHz
eight-core CPU, 16 GB RAM, and an NVIDIA Geforce GTX 980
graphics card. For each input frame, face and eyeball tracking takes
~30ms. For eyelid tracking, our semantic edge detection, identifi-
cation, and curve fitting takes 11ms. As this part only requires eye
region images as input, it is performed on another thread on GPU in
parallel with the face tracking method. Our eyelid correspondence
update and energy minimization take 7ms, and are pipelined with
the head pose and facial expression fitting steps. Thus, our system
requires a total of 37ms to process each frame.

5.1 Evaluations

First, we evaluate our proposed generative eyelid model. As our
model is constructed by a set of shape and pose bases, we show
the effectiveness of some bases individually in the accompanying
video. It demonstrates that different bases control different eyelid
variation, including eye region positions, eye contour shapes, fold
shapes and strengths, bulge shapes and strengths, and closing-eye
motions. Note that except the eye region positions, all the other
characteristics can be separately controlled on each of the eyes. For
simplification, we control them together in the video.

Second, we evaluate our edge detection and identification scheme.
Although we have not collected a large dataset to train our DNN
model, we still find that the model shows good generalization capa-
bility on various test data downloaded from the Internet. As shown
in fig. 10, various Internet eyelid images with different eye shapes,
folds, bulges, skin colors, lighting conditions, long or short eyelashes,
and pupil colors are all correctly handled by our method. The strong
structural information of the four semantic edges contributes to the
generalization capability of our model, which learns the information
by the network with the designed uniform loss.

Besides the visual comparison in fig. 6, we also numerically com-
pare our detection and identification scheme with the alternative
solutions discussed in section 3. As shown in fig. 11, our solution
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Fig. 10. Results of edge detection and identification on internet images.
Different colors indicate different semantic edges used in our eyelid fitting
method.
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Fig. 11. Numerical comparison of different edge extraction methods. Note
that our method outperforms the two compared methods as for the same
recall, we always give higher precision, and for the same precision, we
always give higher recall.

outperforms the approach using four HEDs and the one using inde-
pendent losses. Note that the numbers in fig. 11 are calculated from
100 Internet images which were manually labeled. Note that it is dif-
ficult to obtain high precisions (close to 1) with our method, because
our detected edges are always much wider than the ground truth
(fig. 6). However, it does not affect our whole method because we
have a curve fitting scheme to extract the true edges more precisely.

5.2 Comparisons

Since there is no previous work focusing on real-time shape and
pose reconstruction of 3D eyelids, we compare our system with the
most related previous approach which tracks the motions of face
regions and eyeballs [Wen et al. 2016]. As shown in fig. 12, with the
eyelid tracking, our reconstructed eye regions are more vivid and
consistent with the input images, while Wen et al. [2016] generates
eyelids with fixed shape and unnatural poses as their multilinear
model does not cover the variations of eye regions and there are
not enough features on the eye regions extracted to perform more
delicate eyelid fitting. Further comparisons are shown in the accom-
panying video, better demonstrating that our technique improves
the visual quality of the results.

5.3 Results

We execute our system on facial sequences with various identities
and eyelid motions. Some selected frames are shown in fig. 13. We
can also observe subtle pose changes reconstructed by our method.
For example, the middle two results in the first row have different
strengths on double-folds. The middle two results in the second row

ACM Transactions on Graphics, Vol. 36, No. 6, Article 193. Publication date: November 2017.

show the generation of bulges caused by the smile motion. The third
result in the fourth row shows the slightly different poses of the two
eyes. Please refer to the accompanying video for sequence results.
Besides the subtle motions, our technique is robust to eye glasses
(Live Demo I) or hair occlusions (Result III). This is contributed by
the robustness of our edge detection and identification method.

Table 1. 2D numerical errors of the tracked eyelid landmarks. The error is
the average distance between the projected eyelid edge vertices and the
corresponding 2D landmarks normalized by inter-pupil distance.

fold top  bottom  bulge

Seq. Lina 1.179% 0.879% 0.524% 0.522%
Seq. Sun 0.933% 0.652%  0.73%  0.515%
Seq. Zhang | 0.893% 0.756% 0.679% 0.603%

To measure the accuracy of the final reconstructed eyelids, we
calculate the 2D numerical errors of the eyelid landmarks, i.e., the
distances between the projected eyelid edge vertices and their cor-
responding 2D landmarks on the 2D curves. From table 1, we can
observe that the eyelid edge vertices match the 2D landmarks well
after the energy minimization.

Animation. As our reconstructed motions are represented by
weights of bases of our eyelid model, we are able to transfer motion
across identities. One example is shown in the accompanying video,
where we transfer a sequence of facial motions to two identities with
different face and eyelid shapes. Since our shape and pose models
share the same bases for folds and bulges, directly transferring the
source weights onto these bases may cause shape changes in the
target. To overcome this drawback, we transfer the weight changes
to the weights in the rest pose of the source to that of the target. As
the weight changes represent the dynamics in the source sequence,
they are likely to preserve the target shape but generate the source
motions.

Note that our transfer technique is not similar to blendshape-
based facial motion transfer where blendshapes with consistent
semantic meanings are available for both source and target. In our
transfer technique, since we do not have any prior knowledge on the
characteristic of the dynamics of the target, the transferred motions
always contain some source dynamics that may not match the target
shape. This problem may be solved with a better pose rig of the
target. We could use techniques like those form Li et al. [2010] to
replace the simple deformation transfer in constructing the pose
bases.

5.4 Limitations

First, as the artist-designed bases do not cover all the variations in
real eyelids, the fitting attained using them still has errors. Also,
our model focuses on eye contour shape, double-folds and bulges,
thus we do not consider other details like wrinkles near eye regions.
Generating arbitrary fine-scale wrinkles in real time is still an open
problem (though medium-scale wrinkle capture has been solved by
Cao et al. [2015]). Second, we only collect a small dataset for training
our eyelid edge detector, so input images largely different from our
training set will not be processed well, for example, images recorded
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Fig. 12. Comparisons with Wen et al. [2016] on six selected poses of two users. In each comparison, we provide the input image, the result of our method and

the result of Wen et al. [2016] from left to right.

in challenging lighting conditions. The accompanying video shows
an example of this case, where the bulge detection is not consistent
over time due to the lighting change. Involving more training images
under the target environment may solve this problem. Third, our
system still requires depth information in face tracking. However,
as face fitting could be achieved by RGB input and our eyelid fitting
is based on RGB information, our method could also be ported to
RGB-based systems.

6 CONCLUSION

We propose a real-time system that achieves 3D shape and motion
reconstruction and animation of eyelids. Combined with a face and
eyeball tracking technique, our system generates full face results
in real time from a single view RGBD input, where the more vivid
eye regions largely improve the realism of the reconstructed face.
Technically, the proposed generative eyelid model represents the
complex eyelid shape and motion variations by two linear mod-
els in low dimensional space, which can not only be used for fast
eyelid fitting tasks but also for more applications in eyelid mod-
eling and animation. The proposed DNN model is modified from
a holistically-nested network, but it jointly detects and identifies
multiple semantic edges by learning their structural correlations
from the training data. Finally, the projective edge fitting method
achieves real-time eyelid reconstruction by estimating the param-
eters of our eyelid models from 2D edges. To achieve this goal,
our method extracts semantic points information from edge maps
by a polynomial curve fitting technique and handles partial edge
detection by a novel correspondence updating scheme.
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A EXPLANATION OF OUR SHAPE BASES
béd is a pair of neutral eyelids. b{d controls the vertical location of the
pair and béd controls the distance between the two eyelids. béd&bid
make the left and right eye round. béd&béd make the eyes flat for up-

per eyelids while b;d&béd make them flat for lower eyelids. b;d&b{g

generate upturned eyes, while bi‘f&b{g generate downturned eyes.
b{g&bhd decide the horizontal length of the eyes. The following
eight dimensions are for the characteristic of double-fold eyelids, in
which bi‘si to bég make the inner part, outer part and middle part
of the folds higher and bi9&bi¢ have no fold on either of the two
eyes. With these bases, we are able to generate various shape and
strength of the double-folds. Similar to the double-folds, the bulges
are represented by bé‘;&béf generating bulges parallel to lower eye
eyelids, bé‘;&bég making the middle part of bulges even lowers and
bé?&bég making the outer part lower. As there is no bulges whose
inner part is lower than the outer part, the aforementioned six bases
are enough to represent bulges.

B EXPLANATION OF OUR POSE BASES
For eyelid poses, bg *? is the same as béd. bf P &b; P controls the

closing eye motion. b3e xp &b:xp and bse xp &ngP controls the down-
ward motion at the inner and outer eye corner of the upper eyelids,
while b;xl) &SXP and b;x‘b &fo 0 controls the upward motion of
these parts of the lower eyelids. Thus ble P to bféc ? are able to fully
define the eye contour for closed eyes or extremely opened eyes.
Besides the eye contour, as mentioned before, the double-folds and
bulges may also change with motions. Thus big to bég, which con-
trol the folds and bulges in the shape rig, are again used for pose

rig, as blelxip and b;fp.
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