
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Superpixel-based Efficient Sampling for Learning Neural Fields
from Large Input

Anonymous Authors

ABSTRACT
In recent years, novel view synthesis methods using neural implicit
fields have gained popularity due to their exceptional rendering
quality and rapid training speed. However, the computational cost
of volumetric rendering has increased significantly with the ad-
vancement of camera technology and the consequent rise in av-
erage camera resolution. Despite extensive efforts to accelerate
the training process, the training duration remains unacceptable
for high-resolution inputs. Therefore, the development of efficient
sampling methods is crucial for optimizing the learning process of
neural fields from a large volume of inputs. In this paper, we intro-
duce a novel method named Superpixel Efficient Sampling (SES),
aimed at enhancing the learning efficiency of neural implicit fields.
Our approach optimizes pixel-level ray sampling by segmenting
the error map into multiple superpixels using the slic algorithm,
and dynamically updating their errors during training to increase
ray sampling in areas with higher rendering errors. Compared to
other methods, our approach leverages the flexibility of superpixels,
effectively reducing redundant sampling while considering local
information. Our method not only accelerates the learning process
but also improves the rendering quality obtained from a vast array
of inputs. We conduct extensive experiments to evaluate the effec-
tiveness of our method across several baselines and datasets. The
code will be released.

KEYWORDS
Neural Radiance Fields, Novel view synthesis, Large Input

1 INTRODUCTION
Novel view synthesis(NVS) has always been a hot research topic in
computer vision, with wide-ranging applications in virtual reality,
medical imaging, and augmented reality. In recent years, NVS meth-
ods that represent scenes using neural fields have gradually become
prevailing due to their promising results [16–18, 21, 24, 41, 42, 46].
These methods represent the scenes with Deep Neural Networks
(DNNs) and render the scenes through volume rendering. Com-
pared with traditional Multi-View Stereo (MVS) methods [3, 5, 9,
11, 12, 40], they can easily handle textureless surfaces and inter-
polate unseen areas via regularization techniques [13]. However,
the volume rendering of huge sampled points brings substantial

Unpublished working draft. Not for distribution.Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACM MM, 2024, Melbourne, Australia
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Instant ngp

ours

Epoch 151 Epoch 120Epoch 30

PSNR MetricsGround truth

Figure 1: Comparison between Instant NGP and Our Method:
The top right corner displays PSNR curves for both methods
on the test set, while the visualization below showcases their
rendering results. Incorporating our method enhances the
convergence speed and rendering quality of Instant NGP
noticeably.

computational overhead, which becomes even more severe with
increasing image resolution.

For novel view synthesis, the resolution of input images directly
determines the upper limit of reconstruction quality. With the ad-
vancement of camera technology, the resolution of captured images
continues to increase. However, high-resolution images not only
capture more details but also bring a substantial amount of redun-
dant data. Therefore, traditional random pixel sampling methods
[20, 34] become overwhelmed by the huge number of pixels in
high-resolution inputs. [44] employs a patch sampling strategy
combined with an encoder-decoder structure. They use the encoder
to encode 3D geometric information and the decoder to render
high-resolution outputs. [35] introduces color-guided ray sampling.
They guide the sampling of rays by color and depth, allowing the
rays to pass through regions with richer spatial information. How-
ever, their method does not simultaneously consider both color and
rendering errors, and the redundant sampling of rays results in
slower convergence on high-resolution images.

To address the challenge of large input, we introduce a Superpixel-
based Efficient Sampling (SES) method for learning neural fields.
Our core idea is to increase the number of light paths to acquire
more information, especially in regions with significant rendering
errors, thereby reducing redundancy in sampling. Simultaneously,
we aim to optimize the sampling of light rays to consider local im-
age information. We first employ the SLIC algorithm to segment the
input image into different superpixels, where each superpixel rep-
resents distinct local information. Compared to other segmentation

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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methods like quadtree, superpixels can significantly reduce redun-
dancy. In subsequent steps, we treat superpixels as the smallest
processing unit. We set different sampling probabilities for different
superpixels based on their rendering errors, continuously update
them during training, and incorporate the rendering errors into
the loss function. We apply our method to several popular NeRF
algorithms and test it on multiple common datasets. Our image
rendering quality reached the state of the art at different resolutions,
and integrating our method did not incur additional computational
overhead. In summary, our main contributions can be summarized
as follows:

• We propose an efficient and effective sampling method for
learning neural fields from large input. By segmenting the
image into superpixels, we reduce light ray redundancy, im-
prove sampling efficiency, and take into account local sam-
pling information.

• We have devised a new loss function to expedite the conver-
gence of the network in regions with significant rendering
errors.

• We conduct comprehensive experiments based on popular
neural field methods across several datasets, demonstrating
the advantages of the proposed method.

2 RELATEDWORK
2.1 Novel view Synthesis
In graphics research, the pursuit of Novel View Synthesis (NVS)
hinges on adeptly handling intermediate 3D scene representations.
Previous endeavors have focused on exploring suitable 3D repre-
sentations: Mesh-based or pointcloud-based methods[2, 4, 6, 27, 39]
often rely on depth information or structure from motion(SFM)[28]
techniques for geometric shape restoration, presenting challenges
in rendering realistic images. While approaches utilizing multi-
plane images(MPIs)[7, 19, 32, 33, 38, 51] to express scenes as feature
maps or stacked images can yield high-quality renderings, they con-
strain the variability of perspectives. Voxel-based representations[14,
17, 25, 29, 30, 36] offer swift image rendering but face limitations
in resolution. By modeling scenes as neural implicit fields[20, 22,
31, 47], greater flexibility is attained alongside high-quality im-
age generation: Differentiable Volume Rendering (DVR)[23] and
Implicitly Differentiable Renderers (IDR)[48] have demonstrated
promising results, albeit still requiring precise object mask inputs
during training. The year 2020 saw the groundbreaking introduc-
tion of NeRF[20], revolutionizing NVS through volume rendering.
NeRF employs neural networks to model spatial 3D coordinates
and view directions as volume density and color, employing alpha
blending for pixel color rendering, resulting in remarkable out-
comes. NeRF’s advent has significantly advanced the domains of
new view synthesis, 3D reconstruction, point cloud rendering, and
beyond.

2.2 Training acceleration
NeRF employs volume rendering to render pixel colors, and to
bring sampling points closer to the surface, it introduces a two-
stage sampling method along the rays. However, such an approach
typically demands 1-2 days or even several days for training comple-
tion. To expedite NeRF training, ENeRF[10] utilizes the geometric

features of the scene to guide surface sampling. Some methods
leverage explicit modeling techniques to accelerate scene training:
kilo NeRF[26] decomposes NeRF into multiple small MLPs for faster
training, while DVGO[34], Plenoxels[8], and similar works employ
learnable explicit meshes to expedite training. Instant ngp[21] uti-
lizes multi-resolution hash encoding with a hash table and jump
sampling to swiftly approach the scene surface during training. The
aforementioned works focus on accelerating sampling strategies in
space; Wang et al.[50] use a quadtree to guide sampling, reducing
the number of sampled rays to accelerate training, while Sun et
al[35]. efficiently sample rays by filtering them using images and
depth information. These methods greatly accelerate NeRF train-
ing, although they may encounter limitations when high-resolution
images are input.

2.3 High-resolution Synthesis
To handle high-resolution image inputs and generate high-resolution
images, 4k-NeRF[44] encodes high-resolution images into feature
maps. After training, a decoder is used to decode these feature
maps into high-resolution images. This method reduces the com-
putational burden during NeRF training. However, joint training of
the encoder-decoder with NeRF still requires a considerable amount
of time. UHD-NeRF[15] reconstructs higher-resolution images by
using a combination of neural networks and point cloud represen-
tations. It intends to reconstruct the low-frequency components
of the scene using MLP and the high-frequency components using
point clouds. It is worth noting that both methods mentioned above
use patch sampling to avoid excessive memory consumption. While
patches can capture local information in the scene, their fixed shape
may lead to fragmented image information.

3 METHOD
Our primary objective is to address the slow convergence and scat-
tered sampling issues brought about by high-resolution inputs,
ensuring superior rendering results within the same training time-
frame. Firstly, in Section 3.1, we introduce the NeRF[20] and SLIC[1]
segmentation algorithm, forming our work’s foundation. Subse-
quently, in Section 3.2, we present our two-stage segmentation
method and how we utilize superpixels to guide sampling. Finally,
in Section 3.3, we demonstrate how our method integrates into
existing baselines. Figure 2 illustrates our entire pipeline.

3.1 Preliminaries
NeRF: In NeRF[20], a 3D scene as a continuous function which
takes as input 3D position 𝑥 = (𝑥,𝑦, 𝑧) and viewing direction
𝑑 = (𝜃, 𝜙) and predicts the radiance color 𝑐 and volume density
𝜎 . The architecture of 𝑓𝜃 is chosen such that only the color 𝑐 de-
pends on the viewing direction 𝑑 . This allows the modeling of
view-dependent effects like specularities and reflections while also
encouraging a consistent geometry to be learned. In a determin-
istic pre-processing step 𝑥 and 𝑑 are transformed by a positional
encoding 𝛾 which promotes learning of high-frequency details.
NeRF is typically parametrized by a multilayer perceptron (MLP)
𝑓 : (𝛾 (𝑥), 𝑑) = (𝑐, 𝜎). To render a pixel by a given camera pose, the
expected color 𝐶 (𝑟 ) of a camera ray 𝑟 = 𝑜 + 𝑡𝑑 through the pixel
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Figure 2: Overview of our pipeline. (a) Firstly, we initialize the segmentation of input images using the SLIC algorithm. After a
period of training, secondary segmentation is conducted at certain locations, yielding the final superpixels, and generating
sampled rays. (b) The sampled rays are trained and the rendering error is recorded after each session for subsequent updates.
(c) After ray sampling training, the rendering error for each superpixel is computed based on accumulated data. A sampling
probability map is generated by combining pixel variances, and sampled rays are regenerated accordingly.

that shots from the camera 𝑜 in direction 𝑑 can be calculated as

C(r) =
∫ 𝑡𝑓

𝑡𝑛

𝑇 (𝑡)𝜎 (r(𝑡))c(r(𝑡), d)d𝑡 (1)

where

𝑇 (𝑡) = 𝑒𝑥𝑝 (−
∫ 𝑡𝑓

𝑡𝑛

𝜎 (𝑟 (𝑡))𝑑𝑡) (2)

the accumulated transmittance indicates the probability that a ray
travels from 𝑡𝑛 to 𝑡 without hitting any particle. NeRF is trained
to minimize the mean-squared error(MSE) between the predicted
renderings and the corresponding ground-truth color:

LMSE =
∑︁
p∈P

∥Ĉ(rp) − C(rp)∥2
2 (3)

where P denotes all pixels of training set images, 𝐶 (𝑟𝑝 ) and 𝐶 (𝑟𝑝 )
are the ground truth and output color of 𝑝 .

SLIC: Simple Linear Iterative Clustering(SLIC)[1] is a fast and ef-
fective algorithm for image segmentation. As shown in algorithm1
combines superpixel methods with K-means clustering to cluster
pixels in the color space, thus achieving image segmentation. SLIC
first grids pixels into compact superpixels and then groups these
superpixels into segments based on pixel similarity and distance
measurements. By controlling superpixels’ compacity and distance
parameters, SLIC can significantly reduce computational complex-
ity while preserving image details. Furthermore, SLIC excels in
preserving boundary information of the image, allowing the seg-
mentation results better to retain the sharpness and continuity of

Algorithm 1 SLIC superpixel segmentation
1: /* Initialization */
2: Initialize cluster centers 𝐶𝑘 = [𝑙𝑘 , 𝑎𝑘 , 𝑏𝑘 , 𝑥𝑘 , 𝑦𝑘 ]𝑇 by sampling

pixels at regular grid steps 𝑆 .
3: Move cluster centers to the lowest gradient position in a 33

neighborhood.
4: Set label 𝑙 (𝑖) = −1 for each pixel 𝑖 .
5: Set distance 𝑑 (𝑖) = ∞ for each pixel 𝑖 .
6: repeat
7: for each cluster center 𝐶𝑘 do
8: for pixel 𝑖 in a 2𝑆 ∗ 2𝑆 region around 𝐶𝑘 do
9: Compute the distance 𝐷 between 𝐶𝑘 and 𝑖 .
10: if 𝐷 < 𝑑 (𝑖) then
11: set 𝑑 (𝑖) = 𝐷

12: set 𝑙 (𝑖) = 𝑘

endif
endfor

endfor
13: /* Update */
14: Compute new cluster centers.
15: Compute residual error 𝐸.
16: until 𝐸 ≤ threshold

object boundaries. The distance between 𝐶𝑘 and i is calculated by
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the following formula:

𝐷 =

√︄
(𝐿 − 𝐿𝑖 )2 + (𝑎 − 𝑎𝑖 )2 + (𝑏 − 𝑏𝑖 )2 +

(
𝑆 − 𝑆𝑖

𝑆𝑁

)2
(4)

where 𝐿, 𝑎, 𝑏 are the values in the LAB color space of the pixel, 𝑆
is the position of the pixel,𝐿𝑖 , 𝑎𝑖 , 𝑏𝑖 are the values in the LAB color
space of the center of the superpixel block, 𝑆𝑖 is the position of the
center of the superpixel block, 𝑆𝑁 is the normalization factor, equal
to image size divided by the number of superpixel numbers.

3.2 Superpixel guide sampling
NeRF[20] perceives space by learning a color-constrained network
to output color and density information of three-dimensional spatial
points. Compared to simple regions in space, complex regions re-
quire more iterations for the network to better learn spatial informa-
tion. Previous methods[35, 50] have attempted multiple sampling in
regions with large rendering errors or drastic color changes while
reducing sampling in areas with small rendering errors to achieve
better results. Redundant computations resulting from insufficient
partitioning by quadtrees and other segmentation methods increase
continuously with input scale and are not feasible. Methods guiding
computation through color gradients also struggle with handling
large-scale image blocks. To address these issues, we use the SLIC[?
] algorithm to segment images into different superpixels, which
serve as the smallest processing units for guiding sampling. Due to
the characteristics of superpixels, the problem of insufficient parti-
tioning caused by structures like quadtrees is resolved, reducing
computational overhead in single processing instances.

Image to superpixel During the training process, we will up-
date the SLIC segmentation results twice, which enables the segmen-
tation to focus on rendering errors while conforming to geometric
constraints. At the beginning of training, we will employ the SLIC
algorithm to partition the input RGB image into superpixels.

ℓ𝑖 = 𝐹 (𝑇𝐶𝐼𝐸 (𝐼𝑚𝑎𝑔𝑒)), ℓ𝑖 ∈ 𝐿 (5)

where ℓ𝑖 represents the 𝑖th superpixel in the image, 𝐿 denotes the
collection of all superpixels segmented in the image, 𝐹 represents
the SLIC algorithm1, with its process outlined in Algorithm 1, and
𝑇 signifies the transformation of the image from the RGB color
space to the ICE color space.

Then, during the training process, we will update the superpixel
segmentation results for the second time to make the segmentation
more focused on areas with larger rendering errors. However, it is
not necessary to update all superpixels to avoid disrupting the orig-
inal segmentation structure. Refer to Figure 3, we will concentrate
the re-segmentation effort on the areas with the largest rendering
errors and their adjacent areas, using the masked slic algorithm
to re-segment these regions. In the re-segmentation process, both
RGB color and rendering error are considered simultaneously. First,
the rendering error is mapped to the RGB color space, and then it
is converted to the CIE color space. During the distance calculation
with the SLIC algorithm, the distances in both the RGB and CIE
color spaces are considered.

𝐶𝑘 = 𝛽0𝑇𝐶𝐼𝐸 (𝐼 ) + (1 − 𝛽0)𝑇𝐶𝐼𝐸 (𝑅) (6)

Where 𝐼 represents the portion of the input RGB image that needs
to be re-segmented, 𝑅 represents the portion of the render error

First segment

Random rays
Training

Second segment

Get segment roi

Get error map

Final segmentation

Figure 3: Two rounds of segmentation in our approach: firstly,
an initial segmentation is performed on the RGB image. Fol-
lowing a training period, areas necessitating re-segmentation
are identified, and re-segmentation is carried out by consid-
ering both rendering errors and RGB colors.

that needs to be recalculated. This portion is replicated three times
to meet the dimensional requirements for the transformation to the
ICE space. 𝛽0 is a regularization term used to adjust the weights
between the RGB image and the render error.

Sample with superpixelWe employ superpixels to guide the
pixel-level sampling during the training process. Initially, we com-
pute the average sampling error within each superpixel. Each su-
perpixel’s error ℓ𝑖𝑒𝑟𝑟𝑜𝑟 is computed as follows:

ℓ𝑖𝑒𝑟𝑟𝑜𝑟 =
1
𝑁

∑︁
𝑗∈𝑁

𝑟 𝑗 (7)

where 𝑁 represents the number of pixels sampled in this segment,
and 𝑟 𝑗 denotes the rendering error of the current pixel.

We will calculate the sampling probability for each superpixel
based on its rendering error and RGB color. Initially, we will ex-
clude superpixels with negligible errors, corresponding to either
blank areas in the scene or well-learned regions. Rendering error
serves as the primary indicator for sampling probability calculation.
However, due to significant variations in rendering error scales
within the scene, sampling tends to concentrate on a few super-
pixels. To ensure comprehensive scene coverage, we employ the
square root of the error as a representation of sampling probability.
Despite the stochastic nature of sampling, sampling error may not
fully capture sampling probability. Thus, we supplement this with
RGB information. By computing the variance of colors within each
superpixel, we collectively determine the sampling probability for
each superpixel. Therefore, the sampling probability 𝑔(ℓ𝑖𝑒𝑟𝑟𝑜𝑟 ) for
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each superpixel can be calculated as follows:

ℓ𝑖𝑒𝑟𝑟𝑜𝑟_𝑝 =


𝑐𝑙𝑎𝑚𝑝 (𝑡,

√
max(ℓ𝑖𝑒𝑟𝑟𝑜𝑟 ) )√

max(ℓ𝑖𝑒𝑟𝑟𝑜𝑟 )
, 𝑖 𝑓 ℓ𝑖𝑒𝑟𝑟𝑜𝑟 > 𝑡

0, 𝑖 𝑓 ℓ𝑖𝑒𝑟𝑟𝑜𝑟 <= 𝑡

(8)

ℓ𝑖
𝑠𝑡𝑑_𝑝 =

√︄
1
𝑚

∑︁
𝑥,𝑦

[c(𝑥,𝑦) − c̄]2, 𝑥,𝑦 ∈ ℓ𝑖 . (9)

ℓ𝑖𝑝 = 𝜆𝑒𝑟𝑟𝑜𝑟 · ℓ𝑖𝑠𝑡𝑑_𝑝 + 𝜆𝑠𝑡𝑑 · ℓ𝑖𝑒𝑟𝑟𝑜𝑟_𝑝 (10)

where 𝑡 denotes the minimum error threshold we set. We normalize
the sampling probability of the rendering error component to lie
between 0 and 1,𝑚 represents the number of pixels in the current
superpixel, and c̄ denotes the average color within the superpixel.
𝜆𝑒𝑟𝑟𝑜𝑟 and 𝜆𝑠𝑡𝑑 are the coefficients for the sampling probabilities.
We adjust these coefficients to balance the weights of the two prob-
abilities.

3.3 Superpixel guide sampling
We integrate superpixel sampling into NeRF training and employ
a series of strategies to adapt to high-resolution inputs, thereby
enhancing the rendering quality of NeRF.

Training Progress. Our training process is illustrated in Figure
2. Initially, we employ a random samplingmethod for training while
updating the errors of superpixels in each training iteration. After
the secondary segmentation computation, we utilize superpixels
to guide sampling and ray generation, concurrently accumulating
rendering errors. Upon completion of training for all rays generated
in a single sampling, we update the superpixel errors and regenerate
rays.

Loss Design. We optimize the parameters of the MLP using
pixel-level Mean Squared Error (MSE) loss L𝑚𝑠𝑒 and superpixel
loss L𝑠𝑝 . Our total loss is computed as follows:

L = 𝜆𝑚𝑠𝑒 · L𝑚𝑠𝑒 + 𝜆𝑠𝑝 · L𝑠𝑝 (11)

The calculation method of L𝑠𝑝 is as follows:

L𝑠𝑝 = ℓ𝑖𝑒𝑟𝑟𝑜𝑟 + 0.001 · ℓ𝑖
𝑠𝑡𝑑_𝑝 (12)

Due to the strong bias of L𝑠𝑝 , 𝜆𝑠𝑝 is typically set to be three to
four orders of magnitude smaller than the 𝜆𝑚𝑠𝑒 during the training
process.

Progressive Training. In NeRF[20] and its related works, po-
sition encoding is utilized to enable MLPs to learn more high-
frequency information. However, in practical tests, we found that
while higher frequency position encoding captures more detailed in-
formation, it leads to slower convergence. In our work, we focus on
enabling the training to rapidly learn the scene’s low-frequency in-
formation in the initial, low-frequency stages. Therefore, we adopt
a strategy similar to that used in NeuS2[42] and FreeNerf[45], grad-
ually increasing the bandwidth of the position encoding during the
training process. In NeRF, the representation of position encoding
is as follows.

𝛾𝐿 (x) =
[
sin(x), cos(x), ..., sin(2𝐿−1x), cos(2𝐿−1x)

]
(13)

𝛾
′
𝐿 (x) = 𝛾𝐿 (x) ∗𝑀 (𝑖) (14)

where, 𝐿 represents the maximum frequency in position encoding,
and 𝛾𝐿 (x) defines the specific formulation of position encoding.

The position encoding used in our work is 𝛾
′
𝐿
(x) which is formed

by multiplying 𝛾𝐿 (x) with𝑀 which is a mask with the same dimen-
sion as 𝛾

′
𝐿
(x), designed to mask the high-frequency components,

with its specific parameters controlled by the number of input it-
erations 𝑖 . In practical training, we set the maximum frequency of
the position encoding to a quarter of its original value, which is
gradually increased as the training progresses and the resolution
enhances.

4 EXPERIMENTS
4.1 Implementation Details
In comparison to structures like quad-trees, superpixels do not pos-
sess similar tree-like structures to minimize sampling redundancy.
To fully leverage hardware performance, we provide our method’s
implementation on CUDA. In our implementation, for synthetic
datasets, we set 𝛽0 to 0.8 as per Equation 6, 𝜆𝑚𝑠𝑒 as 1, 𝜆𝑠𝑝 as 1e-6,
whereas for real datasets, we choose 𝛽0 as 0.65, 𝜆𝑚𝑠𝑒 as 1, 𝜆𝑠𝑝 as
1e-8. Our method can be seamlessly integrated into the popular
NeRF framework. To demonstrate the efficiency of our approach,
we selected Instant-NGP[21] and DVGO[34] as our baselines, both
known for their fast training speeds within the NeRF domain. It is
worth noting that, in our experiments, we utilized an open-source
implementation of Instant NGP, namely the nerf-template, which is
a clean version derived from the open-source project torch-ngp[37].
We employed this implementation in our experiments as a replace-
ment for the original Instant NGP.We conducted experiments using
a single NVIDIA RTX 4090 GPU.

4.2 Dataset
We tested our method on the currently popular NeRF dataset to
demonstrate its superiority. We conducted experiments on three
datasets: eight synthetic 360° scenes provided by NeRF, four scenes
from Tank and Template, and eight real scenes from MipNeRF
360 dataset. We also provided ablation experiments to validate
our method. We evaluate the quality of view synthesis for ground
truth from the same pose using three metrics: PSNR, SSIM[43], and
LPIPS[49].

4.3 Realistic Synthetic 360 evaluation
The Realistic Synthetic 360 evaluation dataset[20] is a commonly
used benchmark in the NeRF field. Using Blender, it renders eight
scenes, each with distinct characteristics, and generates 100 train-
ing images per scene, making it a popular choice for multi-view
reconstruction benchmarks. While the native renderings are at a
resolution of 800x800, based on the provided Blender files, we gen-
erated images at higher resolution(1600x1600, 3200x3200). These
newly rendered high-resolution images maintain the original view-
ing angles but offer enhanced clarity. Due to memory constraints,
we conducted experiments only at resolutions of 800 and 1600 on
DVGO.

The quantitative results of our method are presented in Table
1. We compare our approach with the baseline at different scales,
revealing superior performance across all resolutions, notably in
Hotdog and Lego scenes. Visualizations of our results are illustrated
in Figure 4, demonstrating enhanced scene details and reduced
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Ground truth Instant ngp Ours

Figure 4: Results of NeRF Synthetic 3200x3200. The figure showcases the results of our method combined with Instant NGP on
high-resolution inputs from the NeRF synthetic dataset. With the incorporation of our method, the rendered images exhibit
increased detail and high-frequency information.

artifacts, particularly evident in scenarios with large-scale inputs,
upon integration of our method.

4.4 MipNeRF 360
MipNeRF 360 is a commonly used real-world unbounded scene
dataset, comprising intricate scenes without boundaries. We con-
ducted experiments on seven distinct scenes within this dataset.
Each scene dataset includes original 4K images alongside their cor-
responding downsampled versions. We evaluated the 2x and 4x
downsampled input images. Results demonstrate that our proposed

approach outperforms baseline models, particularly excelling in
high-resolution scenes.

In Table 2, we present the quantitative results of our experiments,
demonstrating that our method adapts well to both resolutions and
consistently improves performance over the selected baselines. Our
visual results are showcased in Figure 5, where it can be observed
that our method reconstructs more details compared to the base-
lines, particularly evident with high-resolution inputs. We also
monitored the impact of incorporating our method on the training
time of the baseline. The addition of our method results in only a



697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Superpixel-based Efficient Sampling for Learning Neural Fields from Large Input ACM MM, 2024, Melbourne, Australia

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

(a) NeRF Synthetic.
Blender 800x800 Blender 1600x1600 Blender 3200x3200

Method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

DVGO 31.77 0.955 0.055 30.30 0.942 0.087 - - -
DVGO(ours) 31.88 0.955 0.057 30.57 0.951 0.086 - - -

DVGO(wo mask) 31.15 0.951 0.062 30.06 0.940 0.090 - - -
instant ngp 30.68 0.945 0.078 29.79 0.935 0.108 28.72 0.942 0.084

instant ngp(ours) 31.11 0.948 0.078 30.99 0.942 0.088 29.28 0.944 0.080

Table 1: These are the quantitative results for the NeRF synthetic dataset. As demonstrated, our method shows performance
improvements in the majority of the scenes.

Ground truth Instant ngp(d4) ours(d4) Instant ngp(d2) ours(d2)

Figure 5: The experimental results graph for MipNeRF. We compared our visualization results with Instant NGP at two
downsampling rates: 2x and 4x. Our method consistently produces higher-quality images at both resolutions, with a more
pronounced effect at higher resolutions."

slight increase in training time, posing no significant computational
burden.

4.5 TanksAndTemple
The Tankandtemple dataset provides eight scenes at a resolution of
1080p. We tested our method on four bounded scenes within the
dataset. As shown in Table 3, our method achieves state-of-the-art
performance in several scenes provided by the dataset. Figure1 in
the paper demonstrates the convergence speed and final rendering
results of our method compared to the baseline. We observe faster

convergence and better image quality with our method. Figure 6
illustrates the rendering results of our method at the edges, where
we capture high-frequency information more effectively, resulting
in clearer rendered images.

4.6 Ablation studies
Our method employs a two-stage segmentation approach, aiming
to balance the influence of color and error on segmentation. To
validate the effectiveness of our method, we separately test the
results of segmentation based solely on RGB color and solely on
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(b) Mip NeRF 360.
Mip NeRF down 4 Mip NeRF down 2

Method PSNR↑ SSIM↑ LPIPS↓ Times↓ PSNR↑ SSIM↑ LPIPS↓ Times↓

DVGO 25.65 0.705 0.381 626 25.15 0.668 0.463 654
DVGO(ours) 26.11 0.731 0.372 641 25.62 0.671 0.442 701
instant ngp 25.27 0.702 0.376 274 24.83 0.613 0.482 290

instant ngp(ours) 27.37 0.733 0.361 281 25.81 0.634 0.462 299

Table 2: These are the quantitative results for the MipNeRF dataset. As demonstrated, our method shows performance
improvements in the majority of the scenes.

Instant ngp

ours

Ground truth

Figure 6: We compare the reconstruction results of our
method and the baseline at the edges, where our method
provides clearer edge information.

Method Barn Caterpillar Family Truck Mean

dvgo 26.87 25.70 33.73 27.08 28.35
dvgo(ours) 27.01 25.92 33.77 27.69 28.60
torch ngp 26.18 25.04 31.87 26.67 27.44

torch ngp(ours) 26.39 25.35 32.76 26.82 27.83

Table 3: These are the quantitative results for the Tankand-
Tamplate dataset. As demonstrated, our method shows per-
formance improvements in the majority of the scenes.

rendering error. We use Instant NGP as the baseline and test on the
NeRF synthetic dataset. As shown in the table 4, segmentation based
solely on RGB color leads to unstable results. While it achieves good
performance in some scenes, the results in certain scenes become
unacceptable. On the other hand, using error-based segmentation
alone results in relatively stable improvements, but areas with large
errors may overlook structural information in the scene. Therefore,
our two-stage sampling strategy strikes a good balance between
stability and rendering quality.

5 CONCLUSION
In this paper, we introduce a method called SPS which employs su-
perpixels to guide the pixel-level ray sampling process during NeRF
training, allowing for the processing of large-scale image inputs

Method chair drums ficus hotdog lego

instant ngp 29.06 24.86 29.87 33.98 30.40
instant ngp(rgb) 27.53 26.10 28.92 34.01 32.13
instant ngp(error) 29.61 25.53 31.87 33.96 31.12
instant ngp(ours) 29.65 25.57 30.30 34.24 31.07

Table 4: The experimental results graph for SLIC segmenta-
tion. We conducted experiments testing the results of seg-
mentation based on RGB, rendering error, and our two-stage
segmentation method. It can be observed that our method
achieves the best performance in terms of both stability and
effectiveness.

and the generation of high-quality rendered images. Leveraging
the characteristics of superpixels, we devise a novel segmentation,
updating, and sampling strategy tailored to them. Our strategy effec-
tively balances the relationship between sampling errors and color
information, enabling more efficient information extraction from
large-scale inputs. Additionally, we propose a new loss function
that better utilizes the characteristics of superpixels. In experimen-
tal evaluations, our approach achieves state-of-the-art performance
compared to existing methods.
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