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Abstract. With the development of Deep Neural Networks (DNNs),
many efforts have been made to handle medical image segmentation.
Traditional methods such as nnUNet train specific segmentation models
on the individual datasets. Plenty of recent methods have been proposed
to adapt the foundational Segment Anything Model (SAM) to medical
image segmentation. However, they still focus on discrete representations
to generate pixel-wise predictions, which are spatially inflexible and scale
poorly to higher resolution. In contrast, implicit methods learn continu-
ous representations for segmentation, which is crucial for medical image
segmentation. In this paper, we propose I-MedSAM, which leverages the
benefits of both continuous representations and SAM, to obtain better
cross-domain ability and accurate boundary delineation. Since medical
image segmentation needs to predict detailed segmentation boundaries,
we designed a novel adapter to enhance the SAM features with high-
frequency information during Parameter-Efficient Fine-Tuning (PEFT).
To convert the SAM features and coordinates into continuous segmenta-
tion output, we utilize Implicit Neural Representation (INR) to learn an
implicit segmentation decoder. We also propose an uncertainty-guided
sampling strategy for efficient learning of INR. Extensive evaluations
on 2D medical image segmentation tasks have shown that our proposed
method with only 1.6M trainable parameters outperforms existing meth-
ods including discrete and implicit methods. The code will be available
at: https://github.com/ucwxb/I-MedSAM.

Keywords: Medical Image Segmentation · Implicit Neural Representa-
tion · Segment Anything

1 Introduction

Medical image segmentation, as a pivotal component of auxiliary disease diag-
nosis, holds a crucial role in medical image applications. The advent of deep
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(a) Illustrations of discrete and continuous
representation for medical segmentation.
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(b) Segmentation quality comparison between our
I-MedSAM and baselines.

Fig. 1: (a) Continuous representation with implicit decoders exhibits superior scale
flexibility. (b) I-MedSAM with the fewest trainable params (1.6M) surpasses the state-
of-the-art discrete and implicit approaches and exhibits a solid generalization ability
when facing data shifts. Please refer to Sec. 4 for more experiment details.

learning has spurred the widespread adoption of neural networks customized
for medical images. For example, nnUNet [37] leverages the downsampling and
upsampling modules to aggregate multi-scale contextual features. Transform-
ers [41] uses the self-attention mechanism to significantly augment the repre-
sentation capacity of deep neural networks, improving the accuracy in medical
image segmentation [5]. Recent advancements have witnessed the integration
of foundation models as backbones in various works. The Segment Anything
Model (SAM) [24] demonstrates unprecedented zero-shot segmentation ability.
Therefore, diverse adapters based on parameter-efficient fine-tuning (PEFT) are
crafted to fine-tune SAM for medical images [29,42,43,46].

Despite their notable effectiveness, these methods primarily focus on pixel-
wise or voxel-wise predictions [10,13,19,29,37,46]. While they achieve promising
results, the discrete representations present challenges in spatial flexibility and
introduce discretization artifacts when scaling to arbitrary input sizes. Addi-
tionally, the discrete representations give rise to ambiguity when extracting the
nuanced details crucial for precise boundary delineation [31], which is important
in medical image analysis. The delineation of boundaries can signify the transi-
tions between different human tissues or anatomical structures, thus providing
essential information for accurately separating these instances. Usually, the in-
tricacy and subtlety of this delineation process need additional refinement [1,34].

Compared with discrete representations, continuous representations learn Im-
plicit Neural Representations (INRs) [32] to transform discrete representations
into continuous space. As shown in Fig. 1a, numerous approaches learn a map-
ping from encoded image features and grid coordinates to the segmentation
output, enabling adaptability to various output resolutions [22,33,36,47]. How-
ever, current approaches show unsatisfying domain transfer ability due to the
limited representation capabilities of their pre-trained image encoders. Addi-
tionally, the boundary information of images demonstrates a strong correlation
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with features in the frequency domain [11, 27], which is also ignored by most
previous methodologies. Lastly, existing methods adopt random sampling across
coordinates, underestimating the influence of sampling strategies when learning
INRs.

To address the aforementioned limitations, we propose I-MedSAM, a model
that leverages the benefits of both continuous representations and SAM, aiming
to enhance cross-domain capabilities and achieve precise boundary delineation.
Given the medical images, I-MedSAM extracts the features from SAM with
the proposed frequency adapter, which aggregates high-frequency information
from the frequency domain. These features along with the grid coordinates are
decoded into segmentation outputs by the learned INRs. We employ a two-stage
implicit segmentation decoder, consisting of two INRs in a coarse-to-fine manner.
The first INR produces coarse segmentation results and features. Subsequently, a
novel uncertainty-guided sampling strategy is applied to sample Top-K variance
feature points along with their corresponding grid coordinates. Finally, these
selected samples are fed into the second INR to obtain refined segmentation
results. Notably, I-MedSAM is trained end-to-end with a minimal number of
trainable parameters, yet it achieves state-of-the-art performance compared with
all baseline methods. Our main contributions are summarized as follows:

– We propose I-MedSAM, a novel method that leverages the advantages of
SAM and continuous representations.

– We propose a novel frequency adapter that utilizes high-frequency informa-
tion to enhance features, thereby accurately segmenting boundaries.

– We propose a novel coarse-to-fine INR decoder with an uncertainty-guided
sampling (UGS) strategy, to learn a mapping from features and coordinates
to segmentation output.

– We perform detailed evaluations of I-MedSAM on 2D medical image segmen-
tation. As shown in Fig. 1b, I-MedSAM outperforms state-of-the-art contin-
uous and discrete methods. Experiments also demonstrate that I-MedSAM
is robust to scale and domain shifts.

2 Related Work

Implicit Neural Representation. The concept of signal representation is
fundamental across various domains, especially in the field of computer vi-
sion [31,32]. Traditional methods for encoding signals discretize the input space
into pixel or voxel grids [4,6,7,9,10,15,19,37,38,46]. Different from these discrete
methods, Implicit Neural Representation (INR) learns generator functions that
map input coordinates into the signal values [8]. Numerous studies employ INR
for diverse tasks, including medical data reconstruction, rendering, compression,
registration, super-resolution and segmentation [2, 25, 30, 32, 44]. For segmenta-
tion, conventional methods typically consist of a trained feature encoder and
a decoder. The encoder encodes medical data into features, and the decoder
subsequently decodes features along with their coordinates into segmentation
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output [17, 22, 23, 36, 39, 40, 45, 47]. However, current methods exhibit an imbal-
ance in emphasizing either global or local features and demonstrate relatively
low out-of-distribution ability. In contrast, our proposed approach leverages the
segmentation foundation model SAM to enrich feature extraction. Moreover, we
introduce an innovative uncertainty-guided sampling (UGS) strategy into the
INR, enabling the adaptive selection of samples to train the implicit segmenta-
tion decoder. Please refer to the appendix for more related work.

3 Methodology

In this section, we initially provide a concise overview of the implicit image seg-
mentation problem. Then, we proceed to elaborate on the pipeline of I-MedSAM.
Finally, we elucidate the novel designs introduced in I-MedSAM.
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Fig. 2: The overall pipeline of I-MedSAM. First, given the medical images and a coarse
bounding box as a prompt, I-MedSAM utilizes the medical image encoder and the
prompt encoder to generate discrete features. For the medical image encoder, we de-
sign low-rank adapters and frequency adapters to extract information from the spatial
domain and frequency domain. Then I-MedSAM interpolates all features to align with
the encoded coordinates and decodes them in coarse to fine neural fields. We propose
an Uncertainty Guided Sampling (UGS) strategy to adaptively choose the highest vari-
ance points and refine predictions. I-MedSAM merges the predictions from coarse and
fine neural fields as the final prediction maps.

3.1 Preliminaries

In traditional discrete segmentation with C classes, neural networks aim to learn
a direct mapping from input medical images X ∈ RH×W×3 to class probabilities
O ∈ RH×W×C at the same resolution, in which H and W means height and
width of input images, respectively.
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On the other hand, implicit image segmentation seeks to map each pixel of
medical images X with its coordinate pi = (x, y), where x, y ∈ [−1, 1], to class
probabilities ôi ∈ RC , denoted as Nθ : (pi, Xi) → ôi. Here, Nθ represents a neural
network parameterized by weights θ. This formulation incorporates coordinates
directly on pixels, adjusting the spatial granularity of input coordinates for pre-
dictions at arbitrary resolution, from source resolution H×W to target resolution
H ′ ×W ′, which can be represented as X ∈ RH×W×3 → O ∈ RH′×W ′×C . More-
over, it allows the direct application of pixel-wise loss functions like Cross En-
tropy or Dice. Additionally, the zero-isosurface in Nθ’s implicit space represents
object boundaries, providing an additional advantage for boundary modeling.

3.2 Overall Pipeline

As depicted in Fig. 2, I-MedSAM comprises two main parts. The first part inte-
grates an image encoder with its adapters, forming EncI , and a prompt encoder
EncP , following SAM’s design. Specifically, recognizing the significant role of
the frequency domain in segmentation boundary representation, a frequency
adapter is devised for extracting frequency features. Taking a medical image
and a prompt bounding box as inputs, multi-scale features are extracted from
both spatial and frequency domains. In scenarios involving cross-resolution, the
extracted features need to be interpolated from the source resolution to achieve
segmentation output at the target resolution.

The second part is the implicit segmentation decoder Dec, comprising two
stacked INRs: one "coarse" Decc with shallow layers and one "fine" Decf with
deeper layers. Typically, Decc generates a coarse segmentation map, and Decf
refines it on sampled points. The selection of these points is determined by
the pixel-wise uncertainty of segmentation predictions, assessed through MC-
Dropout and Top-K algorithms. Detailed explanations of these two parts will be
provided in the following sections.

3.3 Medical Image Encoder

In this section, we introduce the frequency adapter and low-rank adapter inte-
grated into SAM, to extract features from both frequency and spatial domains.

Frequency Adapter. Discrete Fourier Transform (DFT) is a common and
effective method for transforming an image into the frequency domain. In prac-
tice, the Fast Fourier Transform (FFT) is employed for efficient computation of
DFT, the spectrum representation of fh,w can be formulated as:

Fu,v =

H∑
h=1

W∑
w=1

fh,w · e−j2π( h
H u+ w

W v). (1)

Subsequently, the amplitude and phase spectrum of Fu,v can be obtained as
|Fu,v| and arg(Fu,v), respectively. Experiment results in Tab. 6 indicate that
the amplitude spectrum exhibits superior representation ability compared to
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the phase spectrum. Therefore, we default to using the amplitude spectrum for
our proposed frequency adapter (FA).

As illustrated in Fig. 3, the individual FA comprises a linear down-projection
layer, a GELU activation layer, and a linear up-projection layer. In total, we
utilize n instances of FA as a sequence, corresponding to the number of Vision
Transformer (ViT) Blocks of EncI .
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Fig. 3: Illustration of the proposed fre-
quency adapter and LoRA in the image
encoder. The image/frequency embed-
ding from patch embedding undergoes
two separate branches in the encoder.

Low-Rank Adapter. In contrast to
fine-tuning all parameters in the image en-
coder EncI , we leverage the Low-Rank
Adapter (LoRA) [16] to update a small
fraction of parameters, adapting SAM to
medical images, as illustrated in Fig. 3.
Given the encoded token sequence F ∈
RB×N×Cin , the resulting token sequence
F̂ ∈ RB×N×Cout is generated using a pro-
jection layer Wp ∈ RCout×Cin , denoted as
F̂ = WpF . LoRA proposes that the ad-
justment to Wp should be gradual and
consistent. It recommends utilizing a low-
rank approximation A ∈ Rr×Cin and B ∈
RCout×r to represent this gradual update,
which can be formulated as:

Ŵp = Wp +∆Wp = Wp +BA. (2)

As the multi-head attention mechanism determines the regions to focus on,
it is reasonable to apply LoRA to the frozen projection layers of query Q, key K,
or value V to influence the attention scores. We notice that I-MedSAM performs
better when LoRA is applied to the query Q and value V projection layers,
which can be expressed as:

Q = ŴqF = WqF +BqAqF

K = WkF

V = ŴvF = WvF +BvAvF

(3)

where Wq, Wk and Wv are frozen projection layers from SAM’s image encoder,
and Aq, Bq, Av, Bv are trainable LoRA parameters.

3.4 Implicit Segmentation Decoder

In this section, we introduce a coarse-to-fine implicit neural representation with
an uncertainty-guided sampling (UGS) strategy to decode features from encoders
into the segmentation maps at target resolutions.

Coarse to Fine Implicit Neural Representation. Given features from
the image encoder EncI and the prompt encoder EncP , we interpolate them
from source to target resolutions and concatenate them with coordinates p. These
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coordinates p are generated at the target resolutions and normalized to [−1, 1].
To address potential biased learning resulting from the direct use of input coor-
dinates [35], we encode the coordinates into a higher-dimensional space using a
high-frequency positional encoding function, which is defined as:

γ(p) = (sin(20πp), cos(20πp), · · · , sin(2L−1πp), cos(2L−1πp) ) (4)

where the hyperparameter L is set to 10 in our experiments following the previous
work. The encoded coordinates, the encoded features from both the image and
prompt encoders are concatenated to feed into the decoder:

Zp = Concat(γ(p), Interp(EncI(X)), EncI(P )). (5)

Here, X and P represent the input medical image and the corresponding coarse
bounding box prompt, respectively. The function Interp refers to the interpo-
lation function based on bilinear algorithms, which is used to interpolate the
encoded features from source to target resolution, in alignment with the encoded
coordinates.

Inspired by NeRF [31], we depart from the one-stage INR approaches to
introduce a two-stage decoding process. This involves optimizing two INRs si-
multaneously: one "coarse" Decc, with shallow layers, and one "fine" Decf , with
deeper layers. Decc produces a coarse segmentation map, ôci , serving as reference
for Decf to refine. Additionally, Decc generates coarse features, zci , employed by
Decf in its refinement process.

We employ MC-dropout to calculate the uncertainty of features ôci for each
pixel. Subsequently, a Top-K percentage of feature points is sampled based on
this uncertainty, denoted as zsi (with s ∈ S). Finally, the predictions from the
"coarse" and "fine" INRs are combined to produce the output of I-MedSAM.
The decoding process is formulated as follows:

ôci , z
c
i = Decc(z

p
i )

zsi = UGS(zci ), s ∈ S

ôfi = Decf (z
s
i )

Ô = Ôc(S \ s) ∪ Ôf (s) , ôi ∈ Ô.

(6)

Here, UGS represents Uncertainty Guided Sampling, which will be further illus-
trated in the following section.

Uncertainty Guided Sampling. In the sampling process, we select feature
points that require refinement from the "coarse" INR Decc and feed them into
the "fine" INR Decf , based on uncertainty estimation. Drawing inspiration from
MC-Dropout methods [12,14], we apply dropout T times to obtain T prediction
results of coarse segmentation probabilities, {oci}Tt=1, given the input features
zpi , denoted as {pt(oci |z

p
i )}Tt=1. The uncertainty is calculated as the variance of
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predictions for each feature point, expressed as:
µi =

1

T

T∑
t=1

(pt(o
c
i |z

p
i ))

ui =
1

T

T∑
t=1

(pt(o
c
i |z

p
i )− µi)

2.

(7)

Subsequently, we sample the feature points with the highest Top-K percent-
age uncertainty to form zsi for Decf to refine. This estimation of uncertainty
reflects the variation in prediction difficulty among different samples. It adap-
tively selects pixels with higher difficulty for refinement by Decf , achieving more
accurate segmentation results.

3.5 Training I-MedSAM

To optimize the trainable parameters of I-MedSAM, we freeze the pre-trained
image encoder EncI , while only unfreezing the proposed adapters, prompt en-
coder EncP and INRs. We utilize SAM’s image encoder with LoRA and our pro-
posed frequency adapter to extract features for input medical images X, while
extracting prompt features in terms of coarse bounding box P for targeted seg-
mentation objects. The coarse bounding box P is randomly adjusted the height
and width following the previous work [46]. Then we concatenate features along
with the mapped coordinate values and decode them with the proposed two-
stage INR decoder. With the coarse to fine INR and the uncertainty guided
sampling strategy, I-MedSAM obtains the coarse and refined point-wise segmen-
tation probabilities {ôci , ô

f
i }i∈X , combined as ôi. For training optimization, we

adopt pixel-wise segmentation loss, which can be formulated as:

Lseg(oi, ôi) = 0.5 · Lce(oi, ôi) + 0.5 · Ldc(oi, ôi) (8)

where Lce and Ldc stand for Cross Entropy loss and Dice loss respectively. We
apply the loss to supervise both coarse and refined segmentation maps progres-
sively. Within the training process, we decrease weights for coarse supervision
and increase weights for refined supervision until I-MedSAM converges.

4 Experiments

In this section, we present extensive experiments to evaluate the effectiveness of
I-MedSAM for medical image segmentation. We first introduce the experimental
settings including datasets and training details. Then we compare our method
with the SOTA implicit and discrete approaches on the binary polyp segmenta-
tion [20] and multi-class organ segmentation [26] qualitatively and quantitatively.
We further evaluate the performance and robustness of I-MedSAM when facing
data shifts. Finally, we conduct a comprehensive ablation study to evaluate the
contribution of each component. Due to space limitations, we provide more de-
tails and visualization results in the supplementary material.
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Table 1: Overall segmentation results versus the state-of-the-art discrete approaches
and implicit approaches. The Trainable Params columns report unfrozen parameters
in training and the Dice columns report averaged scores with standard deviation.

Binary Polyp Segmentation Multi-class Organ Segmentation

Method Dice (%)↑ Trainable Params (M)↓ Method Dice (%)↑ Trainable Params (M)↓

Discrete Approaches

U-Net [37] 63.89±1.30 7.9 U-Net [37] 74.47±1.57 16.3

PraNet [10] 82.56±1.08 30.5 UNETR [15] 81.14±0.85 92.6

Res2UNet [13] 81.62±0.97 25.4 Res2UNet [13] 79.23±0.66 38.3

nnUNet [19] 82.97±0.89 126.6 nnUNet [19] 85.15±0.67 126.6

MedSAM [29] 82.88±0.55 4.1 MedSAM [29] 85.85±0.81 52.7

Implicit Approaches

OSSNet [36] 76.11±1.14 5.2 OSSNet [36] 73.38±1.65 7.6

IOSNet [22] 78.37±0.76 4.1 IOSNet [22] 76.75±1.37 6.2

SwIPE [47] 85.05±0.82 2.7 SwIPE [47] 81.21±0.94 4.4

I-MedSAM (ours) 91.49±0.52 1.6 I-MedSAM (ours) 89.91±0.68 3.5

4.1 Experimental Settings

Datasets. We assess the performance of our model on two distinct tasks: bi-
nary polyp segmentation and multi-class abdominal organ segmentation. For bi-
nary polyp segmentation, we conduct experiments using the challenging Kvasir-
Sessile dataset [20], consisting of 196 RGB images of small sessile polyps. Ad-
ditionally, we evaluate the generalization capability of our model by testing the
pre-trained I-MedSAM directly to the CVC-ClinicDB dataset [3], comprising
612 images from 31 colonoscopy sequences.

For multi-organ segmentation, training is conducted on the BCV dataset
[26], comprising 30 CT scans with annotations for 13 organs. Model robustness is
also evaluated using the pre-trained I-MedSAM on diverse CT images in AMOS
[21] (200 training CTs, maintaining the same setup as in [48]). Since our work
is dedicated to showing the effectiveness of 2D medical image segmentation, we
just slice-wise segment CT data. Following the data prepossess in SwIPE [47],
all datasets are divided with a train:validation:test ratio of 60:20:20, and the
reported dice scores are all based on the test set.

Implementation Details. The training process of I-MedSAM involves fine-
tuning the encoder of SAM [24], utilizing ViT-B as the backbone. We set LoRA
ranks to 4 and incorporate amplitude information in the frequency adapters. For
implicit segmentation decoders, we set latent MLP dimensions as [1024, 512] for
Decc and [512, 256, 256, 128] for Decf . We sample the highest uncertainty points
with a proportion of 12.5% and set the dropout probabilities to 0.5.

For multi-organ segmentation, we slightly modify the number of the last
layer in Decc and Decf to match target segmentation classes. I-MedSAM are
optimized by AdamW [28] with α=0.5, β=0.1, and λada=5×10−5 for adapters in
the encoder and λdec=1×10−3. For fair comparisons, all methods are trained for
1000 epochs on the same experiment settings. The reported test dice score and
Hausdorff Distance [18] correspond to the best validation epoch. Image input
sizes are 384× 384 for Sessile and 512× 512 for each slice of BCV.
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Image Ground Truth nnUNet MedSAMIOSNet I-MedSAM (Ours)

Fig. 4: Qualitative comparison on Kvasir-Sessile dataset for binary polyp segmentation.

Baselines. We divide baselines into two sets: discrete approaches and im-
plicit (continuous) approaches. Discrete approaches include U-Net [37], PraNet [10],
Res2UNet [13], nnUNet [19], UNETR [15] and MedSAM [29]. Specifically, Med-
SAM [29] is also a SAM-based approach, where SAM’s original decoder is directly
finetined. Implicit approaches include OSSNet [36], IOSNet [22] and SwIPE [47].
Given the absence of code availability from the prior state-of-the-art SwIPE [47]
for extended comparison and the demonstrated superiority of IOSNet [22] over
OSSNet [36] in implicit approaches, we primarily compare our method with
IOSNet [22] in several experiment settings.

4.2 Quantitative Comparison

In this section, we first report the dice score compared with baselines. Then we
conduct experiments across different resolutions and domains to evaluate the
robustness and generalization ability under data shifts. Finally, we implement
Hausdorff Distance (HD distance) [18] to compare the quality of the segmenta-
tion boundary with baselines across different experiment settings.

Segmentation Comparison. We make a comparison with both the dis-
crete methods and implicit methods in terms of trainable parameters and Dice
score with standard deviation on Polyp Sessile for binary-class segmentation
and CT BCV for multi-class segmentation, as demonstrated in Tab. 1. On the
smaller polyp dataset, we observe notable improvements over the best-known
implicit methods and discrete methods with much fewer trainable parameters
(1.26% of nnNet [19] and 59.26% of SwIPE [47]). For multi-organ segmentation
on BCV, performance gains are also significant compared with the best-known
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CT Image Ground Truth nnUNet MedSAMIOSNet I-MedSAM (Ours)

Fig. 5: Qualitative comparison on BCV dataset for multi-organ segmentation.

implicit methods and discrete methods. On the one hand, SAM, with the as-
sistance of the proposed frequency adapters, generates abundant features that
enhance the quality of segmentation boundaries. In contrast, SwIPE employs
Res2Net-50 [13] as its backbone, which offers less sufficient features compared
to SAM’s, leading to inferior segmentation quality. On the other hand, with the
proposed uncertainty-guided sampling in INR decoders, I-MedSAM adaptively
selects and refines uncertain pixels with the highest variance, leading to more
accurate segmentation maps.

Table 2: Cross-resolution from
384× 384 to 128× 128, from 384×
384 to 896× 896 on Kvasir-Sessile.

Method
Dice (%)↑

384 → 128 384 → 896

Discrete Approaches

PraNet [10] 72.64 74.95

PraNet* [10] 68.79 43.92

nnUNet [19] 73.97 83.56

nnUNet* [19] 65.34 76.36

MedSAM [29] 82.39 83.19

MedSAM*[29] 82.37 83.32

Implicit Approaches

IOSNet [22] 76.18 78.01

SwIPE [47] 81.26 84.33

I-MedSAM (ours) 91.45 91.33

Robustness under Data Shifts. We
compare the robustness across resolutions and
domains with the best discrete and implicit
methods on binary-class polyp segmentation.

Firstly, to adapt the pre-trained I-
MedSAM model, originally trained on stan-
dard 384× 384 images, to different target res-
olutions such as 128×128 for lower resolutions
and 896 × 896 for higher resolutions, the in-
put coordinates (384×384) are scaled accord-
ingly to match the target resolutions. Subse-
quently, the dice score is computed at these
corresponding target resolutions. For discrete
methods, the resolution of output images re-
mains the same as that of the input images.
We input the original images at their source
resolution (384 × 384) and resize the output
segmentation maps to the target resolution for
evaluation. Additionally, we denote discrete
baselines with the suffix ∗, where the original medical images are resized to
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the target resolution and then provided as input to these methods to directly
generate segmentation at the target resolution.

Table 3: Cross-domain
on binary polyp segmen-
tation and multi-class ab-
dominal organ segmenta-
tion.

Method Dice (%)

Kvasir-Sessile → CVC

PraNet [10] 68.37

nnUNet [19] 84.91

MedSAM [29] 74.59

IOSNet [22] 59.42

SwIPE [47] 70.10

I-MedSAM (ours) 88.83

BCV → AMOS

UNETR [10] 81.75

nnUNet [19] 79.63

MedSAM [29] 71.98

IOSNet [22] 79.48

SwIPE [47] 82.81

I-MedSAM (ours) 86.28

As shown in Tab. 2, implicit methods exhibit spa-
tial flexibility and consistently outperform discrete
methods. Among implicit approaches, our I-MedSAM
achieves the highest performance across various out-
put resolutions. This superior performance can be at-
tributed to the efficacy of the proposed frequency
adapters and uncertainty-guided sampling, enhanc-
ing I-MedSAM’s capability to provide accurate pre-
dictions at arbitrary resolutions.

Secondly, we investigate the robustness of model
performance across different datasets for the same
task. In the binary-class polyp segmentation task, all
methods are pre-trained on the Kvasir-Sessile dataset
and evaluated directly on the CVC dataset. Similarly,
in the multi-class abdominal organ segmentation task,
all methods are pre-trained on the BCV dataset and
evaluated on the AMOS dataset, focusing solely on the
liver class. As shown in Tab. 3, leveraging the gener-
alization ability of SAM, I-MedSAM outperforms the
top discrete method, achieving dice scores of 88.83%
and 86.28% respectively. For additional visualization
comparisons regarding data shifts, please refer to the supplementary materials.

Boundary Comparison. We further utilize the Hausdorff Distance (HD
distance) [18] to assess segmentation boundary quality. I-MedSAM achieves
a lower HD distance, indicating superior boundary quality. For more detailed
boundary visualizations, please refer to Fig.4 and the supplementary materials.

Table 4: Hausdorff Distance comparison on various experiment settings.

HD distance (↓) Kvasir-Sessile Kvasir-Sessile → CVC 384 → 128 384 → 896 BCV BCV → AMOS
nnUNet [19] 31.30 82.31 13.69 72.31 6.50 80.39
MedSAM [29] 21.53 30.15 8.04 51.82 10.62 52.14
IOSNet [22] 51.72 81.60 35.33 87.86 21.46 61.19
I-MedSAM(Ours) 11.59 19.76 7.91 32.77 5.95 37.53

4.3 Qualitative Comparison

As shown in Fig. 4 and Fig. 5, we conduct qualitative comparisons on Kvasir-
Sessile and BCV datasets. Due to the unavailability of code for inference, SwIPE
has been omitted from the visual comparison. We also provide input medical im-
ages along with corresponding ground truth segmentation masks. The segmen-
tation boundaries are delineated by green lines in Fig. 4. From the figures, it can
be witnessed that I-MedSAM obtains better segmentation boundaries. Thanks
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to the proposed frequency adapters and uncertainty guided sampling techniques,
I-MedSAM can efficiently aggregate high-frequency information from the input,
which is beneficial to the accuracy of final segmentation maps. Due to the space
limitation, please refer to supplementary materials for more qualitative results.

4.4 Ablation Study

We conduct ablation studies focusing on three aspects: component-wise abla-
tions, the incorporation of frequency adapter, and point numbers for sampling.
In each of our ablation experiments, other hyper-parameters remain consistent
with the implementation details.

Table 5: Effectiveness of each component of the pipeline. We evaluate the Dice metric
for both cross-domain and cross-resolution tasks.

LoRA FA INR Kvasir-Sessile
Cross-domain Cross-resolution

Kvasir-Sessile → CVC 384 → 128 384 → 896
✓ 83.61 82.57 72.73 76.46
✓ ✓ 88.74 82.61 75.69 78.59
✓ ✓ 88.83 83.40 88.16 88.43
✓ ✓ ✓ 91.49 88.83 91.45 91.33

Component-wise ablations. To demonstrate the effectiveness of each com-
ponent, we conduct a component-wise ablation on Kvasir-Sessile [20], cross-
domain and cross-resolution tasks, as can be seen in Tab. 5. We employ LoRA
alone as a baseline for binary segmentation, obtaining a competitive perfor-
mance, which is consistent with the baseline SAMed [46]. Following the incorpo-
ration of frequency adapters and INR decoders separately, the model’s perfor-
mance exhibits improvements. It can be observed that the INR decoder exhibits
a more pronounced advantage in cross-domain and cross-resolution tasks. Fur-
thermore, simultaneously employing frequency adapters (FA) and INR decoders
can achieve a synergistic effect where 1+1>2.

Table 6: Ablation study
on Frequency Adapter (FA).
FApha stands for utilizing of
the phase spectrum of DFT,
while FAamp stands for the am-
plitude spectrum of DFT.

Setting w/o FA FApha FAamp

Dice (%) 88.83 90.60 91.49

HD 15.44 12.67 11.59

Incorporating the frequency adapter.
Tab. 6 indicates the effectiveness of the frequency
adapter, and it can be observed that amplitude
information is more helpful for spectrum repre-
sentation compared to phase information. The re-
sults also demonstrate the segmentation bound-
ary benefits from the frequency adapter.

Points Number for Sampling. Tab. 7 rep-
resents ablation on points number for Uncer-
tainty Guided Sampling (UGS). This experiment
reveals that I-MedSAM generates high-quality
segmentation masks with the help of the pro-
posed uncertainty guided sampling method. Ex-
cessive sampling points do not necessarily im-
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prove the final segmentation results and may lead to increased memory consump-
tion. Conversely, insufficient sampling points may limit the areas that require
refinement. Therefore, a proportion of 12.5% for UGS is deemed appropriate for
I-MedSAM. The parameter can be adjusted according to the specific tasks.

Table 7: Ablation study on the number of sampled feature points for Uncertainty
Guided Sampling (UGS). "Top-K" denotes the selection of a specified proportion, K%,
from all feature points.

Setting w/o UGS Top-50% Top-25% Top-12.5% Top-6.25% Top-3.125%

Dice (%) 87.77 90.27 89.59 91.49 91.01 90.48

HD Distance 16.15 13.88 14.12 11.59 12.99 14.53

4.5 Effect of different training annotations
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40

50

60

70

80

90

Proportion of Training Annotation Amount (%)

Dice (%)

Ours
MedSAM
nnUNet
SwIPE
PraNet
IOSNet

Fig. 6: Effect on different pro-
portions of training annota-
tion amount.

To illustrate the generalization ability between I-
MedSAM and baselines, we further conduct ex-
periments on different proportions of training an-
notation amount. Following the experiment set-
tings in SwIPE [47], based on the divided training
set, we train I-MedSAM on 10%, 25%, 50% and
100% of the training set. As shown in Sec. 4.5,
our I-MedSAM outperforms all baselines at vari-
ous training annotation amounts. Thanks to the
great generalization ability of SAM’s encoder in
I-MedSAM, I-MedSAM maintains higher segmen-
tation performance even with relatively limited
training annotations.

5 Conclusion

In this paper, we introduce I-MedSAM to enhance
cross-domain ability and adaptability to diverse
output resolutions in medical image segmenta-
tion. By integrating SAM’s generalized representations into the INR space, I-
MedSAM achieves state-of-the-art performance across various experimental sce-
narios. Specifically addressing the challenge of precise boundary delineation in
2D medical images, we incorporate a frequency adapter for parameter-efficient
fine-tuning to SAM, showcasing the potential benefits of complementing spa-
tial domain information with frequency domain insights for foundation models.
Additionally, the employment of the uncertainty-guided sampling strategy in
coarse-to-fine INRs proves effective in the selection and refinement of challenging
samples in continuous space. These findings suggest avenues for future research
to establish stronger connections between different representation spaces.
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