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Abstract. Morphable models are essential for the statistical modeling
of 3D faces. Previous works on morphable models mostly focus on large-
scale facial geometry but ignore facial details. This paper augments
morphable models in representing facial details by learning a Structure-
aware Editable Morphable Model (SEMM). SEMM introduces a detail
structure representation based on the distance field of wrinkle lines, jointly
modeled with detail displacements to establish better correspondences
and enable intuitive manipulation of wrinkle structure. Besides, SEMM
introduces two transformation modules to translate expression blendshape
weights and age values into changes in latent space, allowing effective
semantic detail editing while maintaining identity. Extensive experiments
demonstrate that the proposed model compactly represents facial details,
outperforms previous methods in expression animation qualitatively and
quantitatively, and achieves effective age editing and wrinkle line editing
of facial details. Code and model are available at https://github.com/
gerwang/facial-detail-manipulation.

1 Introduction

Morphable face models[24] capture the statistical distribution of human faces,
which provides them with capabilities to generate and edit 3D faces. Therefore,
they are widely used in face reconstruction[8], expression animation[15], and
interactive editing[41]. In these applications, facial details play a vital role in
conveying the perception of expression and age and enhancing the realism of
the generated face. For example, during animation, facial details appear or
disappear as muscles contract or relax, vividly reflecting the subtle expression.
During interactive editing, animators may wish to manipulate wrinkles at specific
positions. However, current morphable models usually only represent the large-
scale facial geometry, making the results of the above applications over-smooth
and unrealistic, with details absent. A morphable model for facial details is still
missing to the best of our knowledge.

In this work, we augment classic 3D morphable models (3DMMs) in repre-
senting facial details by proposing a Structure-aware Editable Morphable Model
(SEMM). Specifically, a detail model synthesizes a displacement map that encodes
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Draw wrinkle lines Change expression Older Draw wrinkle lines Change expression Older

Fig. 1: SEMM allows the user to manipulate facial details by (i) drawing/erasing
wrinkle lines and changing (ii) expression and (iii) age. Realistic wrinkles can be
generated by drawing lines (shown in green) on the face. Generated details can
be animated when changing expression and transform properly during aging.

detail geometric information, which is then applied to a mesh generated by a
3DMM to get a high-fidelity 3D face. We design a separate detail model because
mixing low and high frequencies hinders the learning of high frequencies [32], and
the effectiveness of learning high-frequency facial details separated from large-
scale geometry is verified in [30,14,18]. With careful design choices, our model
is compatible with widely used large-scale face models, and can be seamlessly
integrated into the animation pipeline to produce detail animation consistent
with the large scale, despite modeling details separately.

Morphable models often assume that faces can be aligned to a fixed template,
which holds for the large-scale shape but cannot account for wrinkle details. For
example, forehead wrinkles exhibit thin line structure and may vary in branch
numbers on different subjects, making it challenging to define and compute the
alignment. As observed in [59], wrinkle lines are almost always imperfectly aligned
in the training data, resulting in averaged details and over-smooth generated
shape. We also find missing wrinkles when directly modeling displacement maps in
training an autoencoder, as the used reconstruction loss abruptly increases when
wrinkles misalign even slightly. To tackle this issue, we first extract wrinkle lines
that encode the structure of details on the facial surface. Inspired by [56,21,83]
that use distance functions in implicit shape modeling, we develop a distance
field representation of the wrinkle lines. The reconstruction loss on distance fields
gradually descends as wrinkles start to align, providing meaningful gradients for
autoencoder learning. Therefore, we propose to combine displacement maps and
distance fields to construct implicit correspondences of facial details and more
accurately model the wrinkle structure.

We instruct the model to generate accurate wrinkle structure on the displace-
ment map, by first ensuring the consistency between the generated displacements
and distance field, and then supervising the distance field to preserve the struc-
ture of wrinkle lines. Specifically, we propose an autoencoder that reconstructs a
pair of displacement map and distance field map from a latent code, and train
the autoencoder adversarially with a discriminator to enforce consistency. The
consistency can lead to more precise wrinkle structure during autoencoding and
enable a user to manipulate the details by editing the wrinkle lines.

The latent space of morphable models is often divided into identity and
expression. Additionally, our detail model allows age control, another key se-
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mantic factor that provides finer granularity of facial detail editing. To allow
effective expression and age control while preserving identity, we propose two
transformation modules to regress direction vectors of changes in the latent space,
and supervise them with expression- and age-specific discriminator outputs. The
direction vectors, as suggested by [35,87], permit semantic editing while better
maintaining identity. To meaningfully control the latent space, we adopt ex-
pression blendshape weights and age values as control parameters, which are
intuitive and compatible with the facial animation pipeline. Our method achieves
qualitatively and quantitatively better expression editing than previous methods
and enables the effective control of detail aging, which is not shown in previous
methods.

To summarize, our contributions are: (i) the first attempt to propose an
editable morphable model that can animate details by editing wrinkle lines,
changing expression weights and age values, (ii) a distance field-based autoencoder
network to better model detail structure and give intuitive control over the
wrinkles, and (iii) two transformation modules to model expression and age
changes, which achieve both accurate representation and effective editing of these
two semantic factors. Code and model will be released.

2 Related Work

Morphable Face Models. Since the pioneering work of [8], morphable face
models have been widely investigated in the literature. [8,11,29] analyze the iden-
tity variation in neutral facial shape by principal component analysis. [58,42,55,79]
construct person-specific linear models to describe expression variations. Fur-
thermore, [75,16,13,82] model the joint distribution of identity and expression by
constructing a multilinear model. After statistical analysis of the facial geometry,
morphable models can generate 3D faces from a compact latent space and perform
expression editing[3,41,37,17] through latent space editing.

To improve the representation ability of morphable models, which are often
linear, several extensions are made to add nonlinearity. Some methods combine
linear models with nonlinear jaw and neck articulation[48] or a physical model
[33]. [61,4,2,12] propose to learn nonlinear morphable models using autoencoder
architectures. Generative adversarial networks are also explored to perform 3D
face modelling[71,1,67,20]. Please refer to [24] for a comprehensive survey. All
the above models focus on large-scale geometry only. Our nonlinear detail model
can be used on top of those morphable models to jointly fit the distribution in a
complete frequency domain of both large-scale and details.

It is challenging to model details by current morphable models, as facial details
are difficult to align in registration, which is a required process to establish dense
scan correspondences. In practice, [59] observes that details are often averaged
out during morphable model construction. To mitigate this issue, [10] proposes
a method to iteratively construct a morphable model and improve registration
correspondences. [83] represents facial geometry as a deep implicit function
and builds a morphable model which automatically establishes correspondences
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Fig. 2: Overview of our method.

between scans. Our model builds better semantic correspondences of facial details
by a novel method to model the distance field of wrinkle lines.

3D Facial Detail Animation and Manipulation. Wrinkle formation
is strongly correlated with physical facial layers such as elastic fibers and
muscles[66,34], which share the same topology among people[60]. This fact enables
modeling details either physically or in a data-driven manner. Several methods
model the facial skin through physics to simulate wrinkle effects[80,9,46]. How-
ever, those methods require a lot of computation time and hand-tuned physical
parameters, therefore we focus on data-driven modeling. To acquire details from
the image data, plenty of methods use either shape from shading[28,68,72,53]
or deep neural networks[62,64,65,36,50,31,84,74,19,25], but they cannot animate
the reconstructed details. [25] uses an encoder-decoder to reconstruct an ani-
matable detailed face from a single image. However, it solely relies on shading
constraints from images and generates less realistic details than captured 3D
scans. To leverage the scan data, [7,81,27,6,69] transfer details from a source
face to a target face. They can obtain realistic details, but the details are not
specific to the target face. Multi-identity local models[30,45,14,18] can be built
from high-resolution scan datasets. However, they only model patch-based local
detail displacements, effective for detail reconstruction but cannot synthesize
detail animation. [47,23] can synthesize plausible details from large-scale shape
or texture, but aging wrinkles are hard to synthesize as they cannot be fully
reflected from large-scale. [82,44] can synthesize high-fidelity animatable faces
given an image or scan. However, they assume that all the details in input faces
are static, thus cannot handle dynamic details in inputs. Several methods allow
users to intuitively create new wrinkles using sketches[5,49,81,40], but they cannot
animate the generated wrinkles. Our model first represents facial details and
their changes caused by structure, expression, and age in a unified latent space.
Thus, it provides easier ways to animate and manipulate facial details.

3 Overview

SEMM serves as a detail model that extends a large-scale 3D morphable model
in [82] to represent shape details. Recall that the large-scale model generates a
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(b) (c)(a)

Fig. 3: We extract a distance field from a displacement map by (a) removing
low-frequency components, (b) extracting detail lines, and (c) applying distance
transform.

face mesh, whose expression is controlled by blendshape weights[42]. The detail
model is designed to be compatible with the large-scale model both in shape
representation and control parameters. For shape representation, the detail model
synthesizes a displacement map that encodes surface details. It is then combined
with the mesh to get a high-fidelity 3D face. The process is natively supported by
modern graphics hardware[14]. The same blendshape weights are used to control
the latent code of the detail model to generate expression animation. Therefore,
the generated facial animation is consistent with large scale and details.

Fig. 2 illustrates the pipeline of our method. To manipulate facial details,
we first get original details from an input image or scan and represent them
on a displacement map, from which we then extract a distance field encoding
the detail structure (Sec. 4). The original details only represent a static input,
thus we find their latent code for manipulation. E and G are used to encode
and generate (middle path through G) both the displacement map and distance
field, and are adversarially trained with discriminator D to model the joint
displacement-distance distribution (Sec. 5). We add Texp and Tage to transform
the latent code to enable expression and age editing (upper and lower paths
through G), and modify D to supervise expression and age (Sec. 6). Finally, Sec.
7 shows experiments of expression, age and structure editing of facial details.

4 Detail shape processing

We represent facial details as a displacement map for its efficiency and common
use in 3D mesh animation pipelines. Each pixel is parameterized in the mesh’s
UV space and encodes a signed displacement from the mesh along the surface
normal direction.

Either a face image or a 3D scan can be used to obtain a displacement map
of input details, which enables further manipulation. Specifically, we first fit
the large-scale morphable model to the image or scan. For an image input, we
then extract a texture map from it and use a Pix2PixHD[76] network trained
on [82] to reconstruct a displacement map. For a scan input, it is smoothed via
Laplacian smoothing[73], and the difference between the original and smoothed
scan is baked into UV space as a displacement map. We use the scan dataset from
[82] for training, and the scans are similarly processed into displacement maps.
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Before modeling, we filter out low-frequency components in the displacement
maps, which do not affect detail rendering (see Fig. 3 (a)), but may hinder the
learning of high frequencies[32].

We propose to extract the spatial location of wrinkle lines to describe detail
structure. Inspired by, but different from [14] which extract wrinkle patches on
the lines, we incorporate the lines into the model to supervise it to generate
accurate structure. On the filtered displacement maps, wrinkles are shaped as
lines because of how they are formed. We perform denoising and use a sketch
simplification network[70] to extract the lines (Fig. 3 (b)). The extracted lines
depict the occupancy of facial details in the UV space.

However, the wrinkle lines are imperfectly aligned, which we find unsuitable
for modeling. As wrinkle lines can be viewed as 2D shapes, we seek a solution
from recent progress in shape modeling[56,83], which has shown improved corre-
spondences using a signed distance function. We adopt the unsigned distance
[21] to model thin lines. Specifically, we convert the line map to a distance field
by Euclid distance transform[51] to obtain each pixel’s distance to the nearest
detail line. Following [78,21], we truncate the distance value to 5% of the map
width to concentrate on the neighborhood of lines, producing the final distance
field maps (Fig. 3 (c)).

5 Modeling displacements and distance fields

Autoencoding the joint distribution. For the displacement map xd and its
distance field map xs, we model their joint distribution p(xd, xs). The joint
distribution is obtained by mapping a latent code z ∼ p(z) to a pair (x̂d, x̂s)
via a generator network, for which we use StyleGAN2[39] to leverage its high
synthesis quality. As the latent code explains variations both in the displacement
map and distance field, we input (xd, xs) to an encoder following the design in
[57] for fast inference. The autoencoding process can be formulated as:

z = E(x) = E(xd, xs), x̂rec = G(z) (1)

where z is a compact latent code of 576 dimensions, E is the encoder, G is the
generator, x = (xd, xs) and x̂rec = (x̂d

rec, x̂s
rec) are the input and reconstructed

samples respectively.
Consistency via the discriminator. To both enable realistic synthesis and

ensure the consistency between synthesized x̂d and x̂s, we add a discriminator
which inputs (x̂d, x̂s) in training. The consistency, as a benefit from joint distribu-
tion modeling, was previously exploited in [43,86] to generate segmentation labels
for unannotated images. While they model a joint image-label distribution for
semi-supervised learning, here we consider the consistency between displacement
maps and distance fields for structure-aware generation and editing. The consis-
tency can guide the detail structure in the generated displacements to follow the
distance field. This fact allows us to add supervision on the distance field during
training to more accurately reconstruct the detail structure. Compared with
modeling displacements only, modeling the joint distribution can better preserve
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input w/ distance field w/o distance field input w/ distance field w/o distance field

Fig. 4: Autoencoding results of jointly modeling displacements and distance fields
(middle) and modeling displacements only (right).

wrinkles during autoencoding, as shown in Fig. 4. Additionally, the consistency
allows a user to manipulate the detail structure intuitively by editing the input
distance field, as shown in Sec. 7.3.

Structure-aware reconstruction and editing. For a generated output
x̂∗ = (x̂d

∗, x̂s
∗), the above discriminator ensures consistency between x̂d

∗ and x̂s
∗.

Additionally, to enforce x̂∗ is consistent with a target x∗ = (xd
∗, xs

∗) in Eqn. 12,
we design a reconstruction loss ℓrec that can be decomposed into two terms:

ℓrec(x̂∗, x∗) = ℓFM (x̂∗, x∗) + λdf ℓdf (x̂∗, x∗) (2)

First, we use the feature matching loss ℓFM to formulate a multi-scale reconstruc-
tion loss:

ℓFM (x̂∗, x∗) =
T∑

i=1

1
Ni

∥∥∥D(i)(x̂∗) − D(i)(x∗)
∥∥∥

1
(3)

This loss follows [76], but on a StyleGAN2 discriminator D with T layers and
Ni components in the ith layer. Second, we use a distance field loss ℓdf to help
reconstruct the detail structure:

ℓdf (x̂∗, x∗) = ∥min(x̂s
∗, δ) − min(xs

∗, δ)∥1 (4)

where x∗ = (xd
∗, xs

∗) corresponds to the target displacement map and its distance
field, x̂∗ = (x̂d

∗, x̂s
∗) corresponds to the generated pair, and δ is set to 5% of the

map width as a threshold to concentrate the loss to areas near details. Note that
ℓdf is not related to displacement maps.

To explain our design of ℓrec: First, we use feature matching loss (Eqn. 3)
instead of L1 loss because L1 focuses on per pixel reconstruction and tends to
ignore structure similarity, as it strongly penalizes structure-similar details with
merely slight misalignment. Second, by supervising the distance field instead of
wrinkle lines (Fig. 3 (c)), misaligned wrinkles start to have some overlap, which
leads to a gradually descending loss value as wrinkles start to align. Both of the
two tend to encourage structure similarity and tolerate slight misalignment of
wrinkles, which we believe can lead to a more compact and well-behaved detail
representation.

Supervising the distance field also enables a user to perform wrinkle line
editing. Specifically, after the wrinkle line map is extracted from the displacement
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map (Fig. 3 (b)), the user draws or erases lines on the line map, before it is
converted to a distance field. The original displacement map and the edited
distance field are then passed through E and G to get the edited displacement
map that is consistent with user edits. This behavior is achieved via a training
objective Lstruct . In training, we sample a displacement map xd

sty and a distance
field xs from different faces to simulate user editing, and encode them jointly to
synthesize the result as

x̂mix = G(E(xd
sty, xs)). (5)

We use the distance field loss to enforce the model to preserve the input distance
field xs

Lstruct = Ex,xsty [λdf ℓdf (x̂mix , x)] (6)

Notice that because the ground truth edited displacement map is unknown, here
we can not use ℓFM as Eqn. 2 did. However, an adversarial objective in Eqn. 11
supervises the generated displacement map to be realistic. In the supplementary
material, we provide more discussion on wrinkle line editing.

6 Expression and age editing

As a deep generative model, the detail model acquires a semantic understand-
ing of the modeled data in its latent space[35], thus enabling expression and
age semantic editing. To be compatible with the facial animation pipeline and
intuitive to control, instead of exposing the latent space to the user, we adopt
blendshape weights and age values as control parameters. Blendshape weights [42]
are commonly used in expression animation, where each dimension corresponds
to the activation strength of a predefined basic expression. This definition makes
it both compatible with the large-scale mesh animation and easy to tune by hand.
When a user edits the expression or age of facial details, first, she specifies the
target blendshape weights or age. Then, the detail model generates edited details
from transformed latent codes. For training, we get each sample’s blendshape
weights and age, which are usually available in a scan dataset. Note that these
annotations are not used in testing. As detailed below, we design the training to
achieve effective expression and age editing while maintaining the identity.

Edit-guided transformation modules. We add two networks that output
latent direction vectors, which permit semantic editing while better maintaining
identity[35,87]. Specifically, given a latent code z of original details and target
blendshape weights ẽ, the expression transformation module regresses a direction
vector. It is then added to the latent code to decode a sample that exhibits desired
expression changes. Age editing is done similarly, and they can be formulated as

x̂exp = G
(
z + Texp(z, ẽ)

)
(7)

x̂age = G
(
z + Tage(z, ã)

)
(8)
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where ẽ and ã are the target expression and age, Texp and Tage are the two
transformation modules to model the difference between the target and the
current latent codes, x̂exp and x̂age are the decoded samples that exhibit specified
expression and age changes. Experiments in Sec. 7.2 demonstrate that by using
transformation modules, we can achieve both accurate representation and effective
editing of details.

Expression- and age-specific discriminator outputs. To supervise the
editing using expression and age annotations, we modify the discriminator to
separately output expression and age information in a multi-task manner[52,22].
It assumes the dataset is divided into nexp key expressions and nage evenly spaced
age groups, and outputs a vector of length nexp +nage. Each element in the vector
describes whether the sample exhibits its corresponding expression or stays in its
age group. Specifically, if we want the sample to exhibit the ith expression e∗
and in the jth age group a∗, the ith and nexp + jth output De∗ and Da∗ will be
used to formulate the adversarial loss as

ℓFake
GAN (x∗, e∗, a∗) = log(1 − De∗(x∗)) + log(1 − Da∗(x∗)) (9)

ℓReal
GAN (x∗, e∗, a∗) = log(De∗(x∗)) + log(Da∗(x∗)) (10)

where the first term of both Eqn. 9 and 10 enforces sample x∗ to exhibit expression
e∗, and the second is to constrain age a∗.

We want the reconstructed sample x̂rec (Eqn. 1) and the mix-generated sample
x̂mix (Eqn. 5) to preserve the original expression e and age a, and the edited
samples (Eqn. 7 and 8) to reach target expression or age while keeping the other
attribute fixed. The total adversarial objective can be formulated as

LGAN = Ex,xexp ,̃a,xsty
[ℓReal

GAN (x, e, a) + ℓFake
GAN (x̂rec, e, a)

+ℓFake
GAN (x̂exp, ẽ, a) + ℓFake

GAN (x̂age, e, ã) + ℓFake
GAN (x̂mix , e, a)]

(11)

Maintaining the identity. To learn a meaningful latent space and maintain
the identity when no editing or expression editing is performed, during training,
we sample a pair of samples x, xexp ∼ X of the same person, with different
expressions e = e(x) and ẽ = e(xexp) respectively. We enforce the encoded latent
code can reconstruct the input x, and the expression-edited latent code obtained
in Eqn. 7 can reconstruct xexp using the reconstruction loss ℓrec defined in Eqn.
2:

Lrec = Ex,xexp [ℓrec(x̂rec, x) + ℓrec(x̂exp, xexp)]. (12)
Notice that we do not have the data of the same subject at different ages.

Thus, we use a cycle consistency objective to maintain original identity during
age editing. During training, we randomly sample a target age ã ∼ U(16, 70),
and perform age transformation according to Eqn. 8. Then we enforce the
reconstruction of original details when transforming the edited sample back to
the original age a as

Lcyc = Ex,̃a

[
ℓrec

(
G

(
E(x̂age) + Tage(E(x̂age), a)

)
, x

)]
(13)
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Full objective. The total training objective can be formulated as

min
E,Tage,Texp,G

max
D∗

Lrec + λGAN LGAN

+Lstruct + λcycLcyc

(14)

7 Experiments

Implementation Details. We use the publicly available dataset from [82]
for training, which is randomly divided into 14,930 training and 1,623 test
samples. We model the displacement map at 256x256 resolution, which we find
is enough to encode wrinkle-level details. Displacement maps and distance fields
are normalized to approximately the same standard deviation to balance the
discriminator’s attention and improve adversarial training. From the training
dataset, we obtain 51-dimensional blendshape weights from the known expression
and one-dimensional age from the demographic information. The expression and
age transformation modules are parameterized by 4-layer MLPs. We use the
network architecture of G and D in [39] and E in [57]. Following [39], our model
uses a non-saturating adversarial loss with R1 regularization [54] to stabilize
training. As we use a multi-task discriminator, xd

sty and xs in Eqn. 5 are drawn
from the same expression and the same age group. We set λdf = 2.5, λGAN = 0.05
and λcyc = 1 to balance the loss terms. The loss terms can be categorized into
groups, and each group shares the same weight, leading to only three above
weights. We set nexp = 20 and nage = 7 during the training. Our model is trained
on two RTX 3090s with a batch size of 16 for 17,700k iterations and takes 21 ms
to encode-decode a displacement map at test time.

Detail quantitative metrics. Previous methods often conduct qualitative
studies alone to evaluate facial details. In addition, we propose to use LPIPS[85]
as a quantitative metric to measure the similarity between two displacement
maps. While LPIPS is originally for measuring natural RGB images, we find it
effective to measure the similarity of facial details because it mainly measures
the visual similarity and semantic accuracy of wrinkles instead of requiring per-
pixel alignment. In the supplementary material, we also investigate the behavior
difference between LPIPS and L1.

7.1 Comparisons

We compare our method with FaceScape [82] and DECA [25], which are SOTAs
that can both represent facial details and their changes with expressions. During
the comparison, all the methods first obtain a detail representation from an input
image, and then use the representation and input target expression parameters
to generate details with a different expression. We use images captured in the
dataset from [77] as test inputs, as it has images of various facial details caused by
expressions. A reference image with the same expression as the target expression
parameters is shown for visualization, and is not inputted to any method. When
animating to other expressions, both the large-scale mesh and details deform
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according to the expression parameters. We conduct the comparison via (1)
qualitative study, (2) user study and (3) quantitative study using LPIPS. Please
see the supplementary material for the user study and quantitative comparison.

R
eference

Input

Ours

R
eference

FaceScape DECA

Input

R
eference

Input

Ours

R
eference

FaceScape DECA

Input

Fig. 5: Comparison with previous methods on expression editing.

Qualitative study. For each test case in Figure 5, the first row shows the
details generated from the original representation, and the second row shows the
generated details with the target expression. FaceScape can generate plausible
dynamic details of the target expression, but it assumes all the details in the input
images are static. Here, dynamic details refer to the details that change with
expressions, while static details mean the ones invariant to expressions. Therefore,
it cannot correctly animate the dynamic details presented in the input image,
causing artifacts (denoted by red boxes). DECA can properly animate the facial
details in arbitrary input expressions. However, its details are less person-specific,
and some age-related wrinkles are absent. Our method can both generate more
diverse dynamic details than other methods (top right, bottom right) and properly
animate the input dynamic details. Specifically, in the bottom-left sample, our
model is shown to learn to activate dynamic details according to facial muscles,
by deactivating the lip region wrinkles while keeping wrinkles between eyebrows.

7.2 Ablation studies

We evaluate three key components of our proposed method by comparing our
model with three baselines with ablated components: (1) Feature matching
loss is evaluated by the w/o ℓFM setting where we replace the feature matching
loss with L1 loss. (2) Distance field is evaluated by the w/o df setting where
use detail lines instead of distance fields for joint modeling. (3) Transformation
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input Ours w/o Texp,age w/o df w/o ℓFM input Ours w/o Texp,age w/o df w/o ℓFM

Fig. 6: Reconstruction results of our model and baselines.

Table 1: LPIPS error of our method and baselines.
Method reconstruction editing

w/o ℓFM 0.1604 0.1755
w/o df 0.1214 0.1481

w/o Texp,age 0.1263 0.1456
Ours 0.1134 0.1455

modules are evaluated by the w/o Texp,age setting where we directly concatenate
the expression and age parameters to the latent code before decoding.

We use the reconstruction LPIPS and the editing LPIPS to measure the
ability to represent input details and make suitable expression changes of facial
details. Specifically, we first encode the input displacement map to a latent code.
We then decode a displacement map using the encoded latent code and calculate
the reconstruction error using LPIPS. We also transform each sample to other
expressions and evaluate the LPIPS between the generated details and the ground
truth. The test split of the dataset from [82] is used, because it provides ground
truth details of the same person with different expressions.

The average LPIPS errors are shown in Table 1, and some reconstruction
samples are shown in Fig. 6. From the results, w/o ℓFM and w/o df give higher
errors in both reconstruction and expression editing. They result in missing or
less pronounced wrinkle details than the full model. This is because in training,
they give a stronger penalization on the reconstructed wrinkles that are not
pixel-aligned with the input. W/o Texp,age generates some details that are related
to the expression, but not in the input (top left, bottom right). Some individual-
specific wrinkles are also absent in its results (bottom left, top right). These lead
to a larger reconstruction error.

7.3 Applications

Our model supports meaningful and intuitive ways to animate and manipulate
facial details, by changing two semantic factors, expression and age, that often
cause facial detail changes. Besides, by allowing directly editing wrinkle lines,
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input young old input young old

Fig. 7: Age progression synthesized by our SEMM.

Fig. 8: Users can add or remove details by editing detail lines. Drawn lines are
shown in green and erased lines are shown in red.

we give users more flexibility to edit facial details. More application results are
shown in our supplementary video.

Age progression. Our method supports continuous age editing by specifying
target age values, as shown in Fig. 7. We can both rejuvenate the input (left
column) and make the input older (right column). Diverse types of wrinkles,
including forehead wrinkles (top right), eye bags (middle right), and crow’s feet
(bottom right), can be generated by our model. Our model works with various non-
neutral expressions, and can synthesize and remove details while being compatible
with the person’s expression and identity. One interesting phenomenon is that
we find our model learns to generate nasolabial folds at an earlier age than other
details like forehead wrinkles (top right), which is consistent with the biological
aging process[60].

Wrinkle line editing. Our model allows users to edit facial details intu-
itively by modifying wrinkle lines. Specifically, users directly edit the detail lines
extracted from the original displacement map, then the edited lines are converted
to a distance field to generate edited details together with the original displace-
ment map. We can effectively synthesize new wrinkles and remove existing ones
by drawing and erasing lines, as shown in Fig. 8. As the edited facial details are
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input reconstruction input reconstruction

Fig. 9: Limitation of our method. Our model cannot reconstruct some rare details
like moles and subtle wrinkles.

still within the representation space of our latent code, they can be further edited
using expression and age editing, as shown in Figure 1.

Blendshape animation. Our model supports expression animation using
blendshape weights. The expression editing results shown in Fig. 5 are also
obtained by manipulating the blendshape weights. It has already indicated that
our method can remove the dynamic details of the original expression, generate
dynamic details of the new expression and keep the static details. For animation
results, please refer to our supplementary video.

8 Limitation

As a data-driven method, our model cannot reconstruct rare details that have
not been seen in the training data, like moles and subtle wrinkles shown in Fig.
9. Pore-level details are still challenging to represent. However, bumps around
eyebrows and hairs, which are from the training data, are represented in our
model because of its data-driven nature.

As a detail model, we only modify details during age editing. Because there
does not exist a method to change the age of a large-scale mesh automatically,
we fix the mesh when evaluating the detail aging effects in Fig. 7. This can often
generate satisfactory results, but sometimes large nasolabial folds are located in
the mesh. If in need, our model is compatible with an artist who manually edits
the mesh to match the specified age value. Future research can extend our model
by simultaneously editing facial details and the mesh.

9 Conclusion

In this work, we augment morphable face models in representing detail shape by
proposing a detail model. We propose a detail structure representation based on
the distance field of wrinkle lines. It is then combined with displacement maps
in an autoencoder to represent and edit wrinkle structure. Two transformation
modules enable expression and age editing while maintaining identity. Our
model produces detail animation compatible with the large scale, achieves better
expression control than previous methods qualitatively and quantitatively, and
enables unprecedented age and wrinkle line editing. These properties make the
model useful in the production pipeline of high-fidelity facial animation.
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33. Ichim, A.E., Kadleček, P., Kavan, L., Pauly, M.: Phace: physics-based face modeling
and animation. ACM Transactions on Graphics (TOG) 36(4), 1–14 (2017)

34. Igarashi, T., Nishino, K., Nayar, S.K.: The appearance of human skin: A survey.
Now Publishers Inc (2007)

35. Jahanian, A., Chai, L., Isola, P.: On the ”steerability” of generative adversarial
networks. In: International Conference on Learning Representations (2020)

36. Jiang, L., Zhang, J., Deng, B., Li, H., Liu, L.: 3d face reconstruction with geometry
details from a single image. IEEE Transactions on Image Processing 27(10), 4756–
4770 (2018)

37. Jiang, Z.H., Wu, Q., Chen, K., Zhang, J.: Disentangled representation learning for
3d face shape. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. pp. 11957–11966 (2019)

38. Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of gans for im-
proved quality, stability, and variation. In: International Conference on Learning
Representations (2018)

39. Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing
and improving the image quality of stylegan. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 8110–8119 (2020)

40. Kim, H.J., Oeztireli, A.C., Shin, I.K., Gross, M., Choi, S.M.: Interactive generation
of realistic facial wrinkles from sketchy drawings. In: Computer Graphics Forum.
vol. 34, pp. 179–191. Wiley Online Library (2015)

41. Lau, M., Chai, J., Xu, Y.Q., Shum, H.Y.: Face poser: Interactive modeling of 3d
facial expressions using facial priors. ACM Transactions on Graphics (TOG) 29(1),
1–17 (2009)

42. Lewis, J.P., Anjyo, K., Rhee, T., Zhang, M., Pighin, F.H., Deng, Z.: Practice and
theory of blendshape facial models. Eurographics (State of the Art Reports) 1(8),
2 (2014)

43. Li, D., Yang, J., Kreis, K., Torralba, A., Fidler, S.: Semantic segmentation with gen-
erative models: Semi-supervised learning and strong out-of-domain generalization.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 8300–8311 (2021)

44. Li, J., Kuang, Z., Zhao, Y., He, M., Bladin, K., Li, H.: Dynamic facial asset and
rig generation from a single scan. ACM Trans. Graph. 39(6), 215–1 (2020)

45. Li, J., Xu, W., Cheng, Z., Xu, K., Klein, R.: Lightweight wrinkle synthesis for 3d
facial modeling and animation. Computer-Aided Design 58, 117–122 (2015)

46. Li, M., Yin, B., Kong, D., Luo, X.: Modeling expressive wrinkles of face for
animation. In: Fourth International Conference on Image and Graphics (ICIG 2007).
pp. 874–879. IEEE (2007)

47. Li, R., Bladin, K., Zhao, Y., Chinara, C., Ingraham, O., Xiang, P., Ren, X.,
Prasad, P., Kishore, B., Xing, J., et al.: Learning formation of physically-based face
attributes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. pp. 3410–3419 (2020)

48. Li, T., Bolkart, T., Black, M.J., Li, H., Romero, J.: Learning a model of facial
shape and expression from 4d scans. ACM Transactions on Graphics 36(6) (2017)



18 J. Ling et al.

49. Li, Y.b., Xiao, H., Zhang, S.y.: The wrinkle generation method for facial reconstruc-
tion based on extraction of partition wrinkle line features and fractal interpolation.
In: Fourth International Conference on Image and Graphics (ICIG 2007). pp.
933–937. IEEE (2007)

50. Li, Y., Ma, L., Fan, H., Mitchell, K.: Feature-preserving detailed 3d face reconstruc-
tion from a single image. In: Proceedings of the 15th ACM SIGGRAPH European
Conference on Visual Media Production. pp. 1–9 (2018)

51. Li, Y., Chen, X., Wu, F., Zha, Z.J.: Linestofacephoto: Face photo generation from
lines with conditional self-attention generative adversarial networks. In: Proceedings
of the 27th ACM International Conference on Multimedia. pp. 2323–2331 (2019)

52. Liu, M.Y., Huang, X., Mallya, A., Karras, T., Aila, T., Lehtinen, J., Kautz, J.: Few-
shot unsupervised image-to-image translation. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision. pp. 10551–10560 (2019)

53. Ma, L., Deng, Z.: Real-time hierarchical facial performance capture. In: Proceedings
of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games. pp.
1–10 (2019)

54. Mescheder, L., Geiger, A., Nowozin, S.: Which training methods for gans do actually
converge? In: International conference on machine learning. pp. 3481–3490. PMLR
(2018)

55. Neumann, T., Varanasi, K., Wenger, S., Wacker, M., Magnor, M., Theobalt, C.:
Sparse localized deformation components. ACM Transactions on Graphics (TOG)
32(6), 1–10 (2013)

56. Park, J.J., Florence, P., Straub, J., Newcombe, R., Lovegrove, S.: Deepsdf: Learn-
ing continuous signed distance functions for shape representation. In: The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) (June 2019)

57. Park, T., Zhu, J.Y., Wang, O., Lu, J., Shechtman, E., Efros, A., Zhang, R.:
Swapping autoencoder for deep image manipulation. Advances in Neural Information
Processing Systems 33, 7198–7211 (2020)

58. Parke, F.I.: A parametric model for human faces. The University of Utah (1974)
59. Paysan, P.: Statistical modeling of facial aging based on 3D scans. Ph.D. thesis,

University of Basel (2010)
60. Radlanski, R.J., Wesker, K.: The face: pictorial atlas of clinical anatomy.

Quintessence publishing (2012)
61. Ranjan, A., Bolkart, T., Sanyal, S., Black, M.J.: Generating 3d faces using con-

volutional mesh autoencoders. In: Proceedings of the European Conference on
Computer Vision (ECCV). pp. 704–720 (2018)

62. Richardson, E., Sela, M., Or-El, R., Kimmel, R.: Learning detailed face reconstruc-
tion from a single image. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. pp. 1259–1268 (2017)

63. Sanyal, S., Bolkart, T., Feng, H., Black, M.J.: Learning to regress 3d face shape and
expression from an image without 3d supervision. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 7763–7772 (2019)

64. Sela, M., Richardson, E., Kimmel, R.: Unrestricted facial geometry reconstruc-
tion using image-to-image translation. In: Proceedings of the IEEE International
Conference on Computer Vision. pp. 1576–1585 (2017)

65. Sengupta, S., Kanazawa, A., Castillo, C.D., Jacobs, D.W.: Sfsnet: Learning shape,
reflectance and illuminance of facesin the wild’. In: Proceedings of the IEEE confer-
ence on computer vision and pattern recognition. pp. 6296–6305 (2018)

66. Serup, J., Jemec, G.B., Grove, G.L.: Handbook of non-invasive methods and the
skin. CRC press (2006)



Structure-aware Editable Morphable Model 19

67. Shamai, G., Slossberg, R., Kimmel, R.: Synthesizing facial photometries and corre-
sponding geometries using generative adversarial networks. ACM Transactions on
Multimedia Computing, Communications, and Applications (TOMM) 15(3s), 1–24
(2019)

68. Shi, F., Wu, H.T., Tong, X., Chai, J.: Automatic acquisition of high-fidelity facial
performances using monocular videos. ACM Transactions on Graphics (TOG)
33(6), 1–13 (2014)

69. Shin, I.K., Öztireli, A.C., Kim, H.J., Beeler, T., Gross, M., Choi, S.M.: Extraction
and transfer of facial expression wrinkles for facial performance enhancement. In:
PG (Short Papers) (2014)

70. Simo-Serra, E., Iizuka, S., Sasaki, K., Ishikawa, H.: Learning to simplify: fully
convolutional networks for rough sketch cleanup. ACM Transactions on Graphics
(TOG) 35(4), 1–11 (2016)

71. Slossberg, R., Shamai, G., Kimmel, R.: High quality facial surface and texture
synthesis via generative adversarial networks. In: Proceedings of the European
Conference on Computer Vision (ECCV) Workshops. pp. 0–0 (2018)

72. Suwajanakorn, S., Kemelmacher-Shlizerman, I., Seitz, S.M.: Total moving face
reconstruction. In: European conference on computer vision. pp. 796–812. Springer
(2014)

73. Taubin, G.: A signal processing approach to fair surface design. In: Proceedings of
the 22nd Annual Conference on Computer Graphics and Interactive Techniques. p.
351–358. SIGGRAPH ’95, Association for Computing Machinery, New York, NY,
USA (1995). https://doi.org/10.1145/218380.218473, https://doi.org/10.1145/
218380.218473

74. Tran, L., Liu, F., Liu, X.: Towards high-fidelity nonlinear 3d face morphable model.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 1126–1135 (2019)

75. Vlasic, D., Brand, M., Pfister, H., Popovic, J.: Face transfer with multilinear models.
In: ACM SIGGRAPH 2006 Courses, pp. 24–es (2006)

76. Wang, T.C., Liu, M.Y., Zhu, J.Y., Tao, A., Kautz, J., Catanzaro, B.: High-resolution
image synthesis and semantic manipulation with conditional gans. In: Proceedings
of the IEEE conference on computer vision and pattern recognition. pp. 8798–8807
(2018)

77. Wang, Z., Yu, X., Lu, M., Wang, Q., Qian, C., Xu, F.: Single image portrait
relighting via explicit multiple reflectance channel modeling. ACM Transactions on
Graphics (TOG) 39(6), 1–13 (2020)

78. Werner, D., Al-Hamadi, A., Werner, P.: Truncated signed distance function: Ex-
periments on voxel size. In: Campilho, A., Kamel, M. (eds.) Image Analysis and
Recognition. pp. 357–364. Springer International Publishing, Cham (2014)

79. Wu, C., Bradley, D., Gross, M., Beeler, T.: An anatomically-constrained local
deformation model for monocular face capture. ACM transactions on graphics
(TOG) 35(4), 1–12 (2016)

80. Wu, Y., Kalra, P., Moccozet, L., Magnenat-Thalmann, N.: Simulating wrinkles and
skin aging. The visual computer 15(4), 183–198 (1999)

81. Xu, F., Chai, J., Liu, Y., Tong, X.: Controllable high-fidelity facial performance
transfer. ACM Transactions on Graphics (TOG) 33(4), 1–11 (2014)

82. Yang, H., Zhu, H., Wang, Y., Huang, M., Shen, Q., Yang, R., Cao, X.: Facescape:
a large-scale high quality 3d face dataset and detailed riggable 3d face prediction.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 601–610 (2020)

https://doi.org/10.1145/218380.218473
https://doi.org/10.1145/218380.218473
https://doi.org/10.1145/218380.218473


20 J. Ling et al.

83. Yenamandra, T., Tewari, A., Bernard, F., Seidel, H.P., Elgharib, M., Cremers,
D., Theobalt, C.: i3dmm: Deep implicit 3d morphable model of human heads.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 12803–12813 (2021)

84. Zeng, X., Peng, X., Qiao, Y.: Df2net: A dense-fine-finer network for detailed 3d
face reconstruction. In: Proceedings of the IEEE/CVF International Conference on
Computer Vision. pp. 2315–2324 (2019)

85. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable
effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. pp. 586–595 (2018)

86. Zhang, Y., Ling, H., Gao, J., Yin, K., Lafleche, J.F., Barriuso, A., Torralba, A.,
Fidler, S.: Datasetgan: Efficient labeled data factory with minimal human effort.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 10145–10155 (2021)

87. Zhuang, P., Koyejo, O.O., Schwing, A.: Enjoy your editing: Controllable gans for
image editing via latent space navigation. In: International Conference on Learning
Representations (2020)

A Overview

In this supplementary material we present:

– Effectiveness of LPIPS[85] as a displacement map metric
– Quantitative comparison using LPIPS
– User study
– Additional discussion on wrinkle line editing
– More qualitative results
– Additional qualitative comparison on in-the-wild images
– Examples of extracted detail line maps and distance fields

Please also refer to our video for animation results.

B Effectiveness of LPIPS[85] as a displacement map
metric

We use LPIPS[85] to evaluate the similarity between displacement maps, because
it is more consistent with the visual similarity perceived by humans, compared
to traditional metrics such as L1 Loss. To investigate this, we select a wrinkle on
a displacement map, delete it or move it, and generate two modified displace-
ment maps, which we refer to as “absent wrinkles” and “misaligned wrinkles”,
respectively. We evaluate the L1 Loss and LPIPS between the modified displace-
ment maps and the ground truth. When evaluating LPIPS, we normalize the
displacement value to range [−1, 1] and convert grayscale to RGB. We also invite
23 participants and ask them which is more similar to the ground truth. The
results are shown in Fig. 10. We find that LPIPS considers misaligned wrinkles
to be closer to the ground truth, which agrees with human judgements, while
L1 Loss disagrees with humans. Therefore, we believe LPIPS is more suitable to
measure displacement map similarity.
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ground truthabsent wrinkles misaligned wrinkles

L1 Loss

LPIPS 0.0227

0.008210.00327

Human 0 vote

0.0051

23 votes

L1 Loss

LPIPS 0.0108

0.00227

ground truthabsent wrinkles misaligned wrinkles

0.00172

Human 0 vote

0.0020

23 votes

Fig. 10: LPIPS agrees with humans on the similarity of facial details, while L1
Loss disagrees with humans.

C Quantitative comparison using LPIPS

We use LPIPS to quantitatively compare the displacement maps generated by
our method, FaceScape[82] and DECA[25]. The comparison is performed on
randomly selected 618 test samples from the dataset from [82], which has samples
of the same person with different expressions. For each sample, all the methods
(ours, FaceScape and DECA) first obtain the detail representation from an input
image. Then, original details are generated from the representation and used
to evaluate the reconstruction error in LPIPS. The detail representation is also
combined with target expression parameters to generate displacement maps with
other target expressions. We evaluate the editing error between the generated
and reference displacement maps in LPIPS. Because DECA’s mesh topology is
different from the dataset from [82], we perform non-rigid registration and then
extract the displacement maps in the way described in our paper. FaceScape is
known to work better with neutral expression inputs, so we separately report
the errors using neutral expression inputs and using inputs with non-neutral
expressions. The results are shown in Table 2.
Our model achieves the lowest error both in reconstruction and editing. The
generated details of DECA are visually plausible, but their quantitative errors are
higher than ours, possibly because their method is only trained on 2D image data.
In DECA’s paper, a similar phenomenon is reported that after adding details,
their mesh reconstruction error increases. The results indicate that our model is
able to both more accurately represent input details and generate dynamic details
better matching the input person’s identity, with either neutral or non-neutral
input expressions.
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Table 2: Quantitative comparison with FaceScape and DECA.
Ours FaceScape DECA

neutral recon 0.1447 0.1784 0.4023
neutral edit 0.1719 0.1991 0.4020

non-neutral recon 0.1511 0.1991 0.4039
non-neutral edit 0.1759 0.1980 0.4021

Fig. 11: A user study example. We use normal map rendering for each method.

D User study

To compare with FaceScape and DECA, we conduct a user study to measure:
(1) how well each method preserves the input identity, (2) how well it conveys
the target expression the user wants to change to, and (3) the overall generation
quality. First, we generated 297 samples from the dataset from [77], each contain-
ing an input image, a reference image with a different expression, and the editing
results generated by different methods. In generating these samples, while we
use DECA’s original renderer to better visualize their results in the qualitative
study, we used a normal map rendering shown in Fig. 11 for all the methods
to render details without bias. The results are also randomly shuffled. Then, 20
randomly selected samples were provided to each participant, and they rated in
the three aspects mentioned above from 1 to 5 (higher is better). In total, we
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Table 3: User study results vs. FaceScape[82] and DECA[25]. FaceScape is
expectedly better at preserving identity, at the cost of not animating details to
convey target expression. Our method is considered the best in overall quality.

Ours FaceScape DECA

Same identity 3.33 3.37 1.37
Convey target expression 3.40 3.01 1.87

Overall better 3.44 3.18 1.36

Fig. 12: Training pipeline for wrinkle line editing.

collected 282 valid responses from 15 participants. The average ratings are shown
in Table 3. Notice that FaceScape treats the dynamic details as static ones and
wrongly keeps them for other expressions. Since all the details are kept, it may
lead to “better” identity preservation as a side effect. Our method is better than
FaceScape in conveying target expressions and is considered the best in overall
quality.

E Additional discussion on wrinkle line editing

The key to achieving wrinkle line editing is using mismatched distance field
and displacement map in training, as shown in Fig. 12. Specifically, the input
displacement map represents the original details. As the distance field is from
another random face, it is used to mimic the user editing. ℓdf supervises the
output distance field to be consistent with the input, keeping the output wrinkle
structure consistent with the edits. ℓGAN keeps the output displacement map
consistent with the output distance field, thus translating the distance field to
the final details represented by the displacement map.
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F More qualitative results

Here we present more extreme results from Feng et al.[63], NoW[26], and CelebA-
HQ[38] datasets in Fig. 13, where more varieties in skin tones and head poses
are well handled. Note that we cannot handle extreme profile poses as the used
large-scale 3DMM fitting fails, which is beyond the scope of this paper on detail
modeling.

G Additional qualitative comparison on in-the-wild
images

Our method can reconstruct and manipulate details from an in-the-wild image.
In Fig. 14, 15 and 16, we show more comparison results on the images from
CelebA-HQ[38] dataset. We generate more diverse dynamic details corresponding
to the reference expression, and can properly animate the dynamic details in the
input image. As a morphable model-based method, we are also more robust than
FaceScape in handling occlusions like facial hair.

H Examples of extracted detail line maps and distance
fields

We use a distance field as the detail structure representation in our model.
We obtain the distance field by extracting lines from the displacement map,
and converting the lines to a distance field. More examples of the input scans,
displacement maps, extracted line maps and distance fields are shown in Fig. 17.
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(a) More diverse skin tones.

(b) More diverse head poses.

Fig. 13: Input images, our reconstruction and editing results.
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Fig. 14: Qualitative results on CelebA-HQ.
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Fig. 15: Qualitative results on CelebA-HQ.
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Fig. 16: Qualitative results on CelebA-HQ.



Structure-aware Editable Morphable Model 29

scan displacement map detail lines distance field

scan displacement map detail lines distance field

scan displacement map detail lines distance field

scan displacement map detail lines distance field

Fig. 17: Scans, displacement maps, extracted detail lines and distance fields.
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