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Abstract

In this paper, we propose an alternative method to esti-

mate room layouts of cluttered indoor scenes. This method

enjoys the benefits of two novel techniques. The first one

is semantic transfer (ST), which is: (1) a formulation to

integrate the relationship between scene clutter and room

layout into convolutional neural networks; (2) an architec-

ture that can be end-to-end trained; (3) a practical strat-

egy to initialize weights for very deep networks under un-

balanced training data distribution. ST allows us to ex-

tract highly robust features under various circumstances,

and in order to address the computation redundance hidden

in these features we develop a principled and efficient infer-

ence scheme named physics inspired optimization (PIO).

PIO’s basic idea is to formulate some phenomena observed

in ST features into mechanics concepts. Evaluations on

public datasets LSUN and Hedau show that the proposed

method is more accurate than state-of-the-art methods.

1. Introduction

Given an input RGB image, a room layout estimation

algorithm should output all the wall-floor, wall-wall, and

wall-ceiling edges (depicted by Fig 1). This is a funda-

mental indoor scene understanding task as it can provide

a strong prior for other tasks like depth recovery from a

single RGB image [7][6] or indoor object pose estimation

[23][9][22]. Besides, the room layout itself provides a high-

level representation of an indoor scene for emerging appli-

cations like intelligent robots and augmented reality. This

problem draws constant attention since the publication of

the seminal work [11], and there are two lines of followers:

(1) As the upper part of Fig 1 shows, conventional meth-

ods follow a proposing-ranking scheme. Typically, the

∗This work was done when Hao Zhao was an intern at Intel Labs China
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Figure 1. Above is the overview of conventional methods. Below

is the overview of our method. Better viewed electronically.

proposing part consists of three sub-modules as edge de-

tection, vanishing point voting and ray sampling. With

hand-crafted features and structured inference techniques,

the ranking part outputs the best layout proposal, sometimes

along with a representation of the clutter.

(2) Recent methods [17][3][27] achieve dramatic perfor-

mance improvements via features produced by fully con-

volutional networks (FCNs). [17][27] still follow the tra-

ditional proposing-ranking scheme. [3] is a proposal-free

solution in which all those steps about proposal generation

are eliminated. And instead of proposal ranking, in [3] in-

ference is achieved through an optimization module.

Alternative to these two lines of works, we propose a

method that features the advantages of both yet goes beyond

them. It is illustrated by the lower part of Fig 1 and the

motivations are in two folds:

Conventional methods. They provide many useful in-

sights about indoor scene understanding. [11] and its

followers [25][21][20][4][5][29] explore different ways to

model the relationship between room layout and scene clut-

ter. This effort is reasonable because the major challenges

of room layout estimation lie here. Take Fig 1 for exam-

ple, over 50% of wall-floor edge pixels is occluded by the

bed. If the bed does not exist, this task will become much

easier. However, these insights are not visited in recent

FCN-based room layout estimation works. When design-

ing networks, they treat FCNs as black boxes, taking no

scene clutter information into consideration. As modelling
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meaningful concepts with a neural network has always been

difficult, it motivates us to explore the possibility to describe

scene clutter within an FCN.

FCN-based methods. Unlike [17][27] which still fol-

low the proposing-ranking scheme, [3]’s framework shows

intriguing compactness. However, its optimization is prim-

itive in which the sampled solution space is exhaustively

searched and no gradient is modeled. So the second motiva-

tion of this paper is to develop a principled, gradient-based,

and efficient optimization algorithm for this task.

Guided by the first motivation, we propose Semantic

transfer (ST) which has three features from three differ-

ent perspectives: 1) As a discriminative model, it integrates

the relationship between room layout and scene clutter into

an FCN. 2) As an architecture, it enjoys the benefit of

end-to-end training. 3) As a training strategy, it provides

better network initialization and allows us to train a very

deep network under unbalanced training data distribution.

ST provides highly robust features under various circum-

stances. Accordingly we propose an inference technique

named Physics inspired optimization (PIO). ST and PIO

play different yet closely interdependent roles because the

core idea of PIO is to formulate some phenomena observed

in ST feature maps with mechanics concepts.

2. Related Works

Conventional methods. The standard definition of room

layout estimation is firstly introduced by [11]. It clusters

edges into lines joining at three vanishing points, according

to the famous Manhattan assumption [2]. Then a lot of lay-

out proposals are generated by ray sampling. Hand-crafted

features are used to learn a regressor for proposal ranking.

Later on, many works try to improve this framework. [19]

detects conjunctions instead of edges and modifies proposal

generation and ranking accordingly. While ranking room

layouts, [25] simultaneously estimates a clutter mask. [21]

aims to improve the inference efficiency of methods like

[25]. Going beyond estimating clutter mask, [20] estimates

objects’ 3D bounding boxes and room layout during infer-

ence. Except for learnt clutter representations, [4] incorpo-

rates furniture shape prior. In [5]’s formulation, furniture is

modeled with parts instead of a box. [29] goes even further

by modelling furniture relationship with scene grammars.

FCN-based methods. Recently [17] trains an FCN for

pixel-wise edge labelling, with every pixel assigned a label

from this 4-class set S {background (bg), wall-floor edge

(wf), wall-wall edge (ww), wall-ceiling edge (wc)}.

S = {bg, wf, ww,wc} (1)

Activations of the last layer are incorporated into the

conventional inference framework as features. [3] uses an-

other formulation in which every pixel may be assigned

Figure 2. Top: Probabilistic node connectivity. Bottom: Semantic

transfer. In stage three, pre-trained network refers to the one out-

lined by the dashed box in stage one. In stage four, pixel-wise edge

labelling network refers to the one outlined by the dashed box in

stage three. Better viewed electronically for a higher resolution.

a label from a 5-class set {floor, left wall, middle wall,

right wall, ceiling}. This 5-class formulation has an am-

biguity problem as the patterns of three type of walls are

not discriminative in nature. FCN is coordinate-invariant

since convolutional layers actually conduct a sliding win-

dow search, so it is not suitable to tell the difference be-

tween left wall and right wall. Thus [3] uses an additional

ambiguity clarification step. [27] uses both formulations for

FCN training. These FCN-based works show dramatic per-

formance improvements but as stated by the second motiva-

tion, their inference schemes remain conventional or primi-

tive. With robust FCN features, it is possible to design more

principled and efficient inference schemes.

Broader literature. There are actually other scene un-

derstanding tasks substantially same as or similar to room

layout estimation. For example, [18] tries to understand the

layouts of natural scenes with a horizon, urban scenes, cor-

ridors and others, for which room layout estimation is only

a special case. Another special case of [18] is outdoor ur-

ban layout estimation, such as [1][13]. It is often regarded

as a graphics application under the name of photo pop-up

and evaluated with subjective user study. [14] tries to re-

cover more detailed room layout than a box and evaluates

with wall-floor edge error. Since these works exploit tech-

niques that [11] is built upon, they could potentially benefit

from the method proposed in this paper.

Concepts similar to ST and PIO. If we look at an even

broader literature, the concepts somewhat similar to ST and

PIO have already been discussed. Under the name of label

transfer, [16][28] address semantic segmentation in a non-

parametric manner. ST is different from them primarily as

a unified deep architecture (and of course in its parametric

nature). [8] and its followers are famous for stating human

limbs as springs. PIO is different from them primarily as an

efficient approximation inspired by mechanics concepts.
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Figure 3. (a) Network design for ST stage one. (b) Qualitative results for semantic segmentation on dataset LSUN. Note that LSUN does not

provide semantic segmentation ground truth. (c) Unsupervised structure visualization of the semantic feature space. (d) Transfer weights

Visualization. Left-top: bg. Right-top: wf. Left-bottom: ww. Right-bottom: wc. Better viewed electronically for a higher resolution.

3. Semantic Transfer

Here we present semantic transfer which is made up of

3 stages (Fig 2). Firstly we look at the inference phase:

the ultimate goal of our FCN is pixel-wise edge labelling.

As demonstrated by Fig 2’s stage four panel, four pixel-

wise activation maps are extracted from the input image,

with each one corresponding to a label from S (set 1). For

example, in the wf activation map higher color temperature

indicates higher possibility of wf existence.

In stage one, we train an FCN for 37-class semantic seg-

mentation on dataset SUNRGBD in order to describe a clut-

tered scene to the utmost extent. These 37 categories can

cover most of the stuff and furniture that commonly ap-

pear in an indoor scene, like wall, ceiling, chair or window.

We build this FCN upon the newly introduced architecture

ResNet-101 [10]. As Fig 3a shows, we do net surgeries to

the last two sets of bottlenecks in original ResNet-101, with

the hole mechanism described in [15] (under the name of di-

lated convolution in [26]). Inputs to this network (RGB im-

ages) are actually random variables X taking values from

[0, 255]. X is determined by hidden random variables Y

taking values from semantic labels [1, 37]. Thus this net-

work describes the posterior distribution P (Y |X).

In stage two, we feed the room layout dataset LSUN

through the semantic segmentation network, producing

pixel-wise 37-channel semantic features. Since they are

both indoor scene understanding datasets, the model trained

on SUNRGBD generalizes well on LSUN. Fig 3b shows

some qualitative results on LSUN, all of which are produced

by a softmax operation without post-processing techniques

like conditional random fields. Then treating every pixel as

a sample, we learn a fully connected layer to bridge the gap

between 37-channel semantic features and 4-class edge la-

bels. In order to illustrate that semantic features are discrim-

inative for this task, we do a standard unsupervised analysis

with t-sne [24]. As Fig 3c shows, samples of wall-ceiling

edges (wc) and wall-floor edges (wf) form obvious clusters

in the embedding space. Yet some samples of wall-wall

edges (ww) and background (bg) scatter among each other.

In this stage, Y is determined by hidden random varibles Z

taking values from edge labels [1, 4] (set 1). So this fc layer

describes the posterior distribution P (Z|Y ).

P (Z|Y ) is a parameterized representation of the rela-

tionship between room layout and scene clutter. Unlike pio-

neering works, we model this relationship directly in a neu-

ral network. This is inspired by how a human understands

room layout. As demonstrated by Fig 2’s stage two panel,

the network in stage one extracts 37-channel semantic fea-

tures from the scene. Only the channel on top of the stack

is fully illustrated, and that channel corresponds to window.

This channel can roughly tell the locations and extensions

of three windows in the scene. How would a human brain

parse room layout from semantic features like this? We hy-

pothesize that it makes decisions according to rules like:

wall-floor edges cannot go through windows, so they are

less possible to appear in areas with high window scores.

In order to validate that the network behaviors are con-

sistent to this hypothesis, we visualize the transfer weights

in this fc layer. These weights are learnt for 100 times in-

dependently and organized into box figure as Fig 3d. Not

surprisingly, wall, floor and ceiling channels of semantic

features contribute the most to ww, wf and wc, respec-

tively. Generally speaking, higher scores with smaller boxes

means stronger correlation. We take wc for example. Ex-

cept for ceiling, top four transfer weights come with cab-

inet, picture, sofa and whiteboard. According to common

sense, cabinet, picture and whiteboard tend to appear in the
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receptive field of a wc pixel, because they are vertically high

in physical space. sofa is usually lower, so its variation (de-

picted by box size) is twice picture’s. whiteboard is rare,

explaining why its variation is also large.

In stage three, this learnt 37× 4 fc layer is reshaped into

a 1 × 1 × 37 × 4 convolutional layer and added on top of

the network trained in stage one. Weights from stage one

act as a feature extractor, and weights from stage two act as

a classifier. They form a pixel-wise edge labelling network

describing P (Z|Y )P (Y |X) = P (Z|X). On one hand, this

network can be end-to-end fine-tuned on LSUN for edge

labelling, which is the ultimate goal we mentioned at the

beginning of this section. On the other hand, it incorporates

the relationship between scene clutter and room layout ele-

gantly, which is the first motivation of this paper.

Except for end-to-end training and scene clutter mod-

elling, another advantage of semantic transfer is better ini-

tialization for extremely unbalanced training data. We have

tried to train this pixel-wise edge labelling network directly

with the ResNet FCN (Fig 3a), leaving out ST. But outputs

of the batch normalization (BN) layers are prone to over-

flow, making training fail. Training problems are also re-

ported in [17]’s 3.2 section. It says the network has to be

pre-trained on NYUd2 and pre-training on PASCAL leads

to bad results. This problem may be caused by the ex-

tremely unbalanced distribution of edge labels. As shown

by Fig 2’s stage two panel, over 99% labels are back-

ground. Like the classical method of initializing an auto-

encoder with multiple restricted boltzmann machines [12],

our pixel-wise edge labelling network is initialized by the

first two stages. We no longer observe the overflow phe-

nomenon with ST.

Probabilistic nodes’ connectivity is illustrated by Fig 2’s

upper part. The pre-trained model will be released. Details

about network, unsupervised analysis and weights visual-

ization are provided in the supplementary material.

4. Optimization

We provide comprehensive feature quality visualizations

and comparisons in the supplementary material. For pa-

rameterized room layout inference, we propose two tech-

niques: naive optimization (NO) and its efficient approxi-

mation named physics inspired optimization (PIO).

There are 11 different possible room layout topologies in

a 2D image, as demonstrated in the supplementary material.

We index them with i. Each topology is parameterized by

the edge conjunctions set Pi = {Pij , j ∈ [1, nC]}, with

every Pij as a 2D coordinate and nC as the conjunction

number. Conjunction connectivity is defined by edge set

Ei = {Eik = (Qka, Qkb, c), Qka ∈ Pi, Qkb ∈ Pi, c ∈
S, k ∈ [1, nE]}, with nE as the edge number. S is set 1.

The 6th topology is demonstrated in Fig 4 as an example.

Pi and Ei can be converted into a pixel-wise edge label map

Figure 4. The 6th topology, clipped from LSUN specification.

which is similar to the output in Fig 1. This conversion

is denoted as M = C(Pi, Ei) and we will omit Ei later

because it does not change for a certain topology. Also, we

will use M [Pi] when referring the map M produced from

conjunction set Pi and M [Pij ] when a certain conjunction

Pij is under consideration.

The features produced by the pixel-wise edge labelling

network are denoted as Fl(l ∈ [1, 4]). Note that both M and

Fl are of the same size as input image, denoted by (w, h).
On them we define the consistency objective (CO) and its

corresponding energy format (e):

CO =
1

wh

4∑

l=1

w∑

m=1

h∑

n=1

Fl(m,n)×Ml(m,n) (2)

e = exp(−CO) (3)

in which Ml(l ∈ [1, 4]) is the binary mask generated from

M by setting a pixel to one if M(m,n) = l and zero oth-

erwise. For every different topology we can find the best

parameterized representation Pi by minimizing e:

Pi = argmin
Pi

e (4)

In most cases, starting from the right topology leads to

the lowest energy value and wrong topologies lead to higher

energy values. Failure cases do exist and we will visualize

them later. All optimization implementations detailed be-

low are initialized from the average state of Pi set (such as

the one demonstrated by Fig 4’s left figure).

4.1. Naive Optimization

To solve Equation 4, firstly we propose NO as follows:

∂e

∂Pijx

≈ e(Pij(x+∆x))− e(Pij(x−∆x)) (5)

∂e

∂Pijy

≈ e(Pij(y+∆y))− e(Pij(y−∆y)) (6)

∆Pij = α× (−
∂e

∂Pijx

,−
∂e

∂Pijy

) (7)

in which α is the scaling factor and ∆x (= ∆y) is the

window size. For conjunctions at image boundary (e.g. P62
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Algorithm 1 Naive Optimization

Initialize: average Pi

while e decreases do

for all j do

update Pij according to Equation 5, 6, and 7

end for

calculate e at updated Pi

end while

in Fig 4’s left figure), an additional constraint is imposed

by setting corresponding component of ∆Pij to zero. If

conjunctions move to image corners, ∆Pij is treated as a

special case so as to allow the conjunction to move onto an-

other boundary or just stick to the corner. The convergence

performance of NO is good but it is very slow so we intro-

duce PIO as an efficient alternative.

4.2. Analysis and Motivation

We first analyze the efficiency bottleneck of NO. When

calculating Equation 5 (and similarly Equation 6),

∂e

∂Pijx

∝ −(CO(Pij(x+∆x))− CO(Pij(x−∆x))) (8)

= −

4∑

l=1

∑

m,n

Fl × (Ml[Pij(x+∆x)]−Ml[Pij(x−∆x)]) (9)

In Equation 9, we omit m,n whose meanings are stated

in Equation 2. Calculating Ml[Pij(x+∆x)]−Ml[Pij(x−∆x)]
is the efficiency bottleneck, which represents M = C(Pi)’s
gradient and we illustrate M2[Pij(x+∆x)]−M2[Pij(x−∆x)]
with Fig 5a, which subtracts two pixel-wise masks.

As a reminder, M is generated by conversion C. At first,

we implement C by traversing every pixel to decide its la-

bel. If we denote the scale of w, h by N, the complexity of

this implementation (referred as NOA later) is O(N2) for

every calculation of Equation 5 or 6. It runs for tens of min-

utes for an image. An improved implementation (referred as

NOB later) of C calculates pixel coordinates between two

conjunctions and accesses corresponding mask element di-

rectly. Its complexity is O(N), and it runs for about 30s for

an image. The idea of further reducing the complexity to

O(1) motivates us to introduce PIO.

We consider every edge as a spring which may translate,

rotate and change its length. In NO, edges’ movements are

decided by every pixel on them, yet there is computation re-

dundance. As demonstrated by Fig 5c and Fig 5d, we con-

sider the feature map as a potential field and analyze how

points on the edge move. Not surprisingly, their movements

are not independent and can be roughly interpolated from

the movements of the edge’s two endpoints, that is Qka and

Qkb. Based on this observation, we propose to approximate

Figure 5. (ag) M2[Pij(x−∆x)]. (ah) M2[Pij ]. (ai) M2[Pij(x+∆x)].
(b) Input image. (c/d) If we consider an edge as a spring and the

feature map as a potential field, forces imposed on the spring’s ev-

ery point are correlated. (e/f) The influence of force composition.

∆Pij with gradients defined on Pi instead of Ml[Pi]. Since

the number nC of conjunctions Pi is constant, the complex-

ity is O(1). This is PIO’s first key concept.

Force composition is the second key concept of PIO. As

demonstrated by Fig 5e, if we consider the endpoints of

edge j and k instead of every points on them they will move

towards a local minima state. This will be corrected by cal-

culating the movements of edge l (Fig 5f), in which another

feature map (wall-wall edge) will be used as the potential

field. So the movement of every conjunction should be de-

cided by the forces imposed on every edge that is connected

to that conjunction. Obviously adding two gradient vectors

(such as the ones in Fig 5e and Fig 5f) naturally obeys the

parallelogram law of force composition.

4.3. Physics Inspired Optimization

For the first concept, we define a new consistency objec-

tive for each endpoint of an edge Eik = (Qka, Qkb, c):

CO2 = Fc(Qkax, Qkay) (10)

e2 = exp(−CO2) (11)

As a reminder, the meanings of E and F are stated at

the beginning of this section. Calculating the gradient of a

certain point in a potential field is trivial as:

∂e2

∂Qkax

≈ e2(Qka(x+∆x))− e2(Qka(x−∆x)) (12)

∂e2

∂Qkay

≈ e2(Qka(y+∆y))− e2(Qka(y−∆y)) (13)

∆Qka = α× (−
∂e2

∂Qkax

,−
∂e2

∂Qkay

) (14)
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Figure 6. Left: qualitative results on LSUN validation set. The visualized feature map merges wf, ww, and wc by a pixel-wise max

operation, yet they are used independently in PIO. Right: typical failure cases in which a wrong topology produces the lowest energy.

In this physics inspired optimization, ∆Qka is regarded

as a force imposed on the endpoint Qka of an spring-like

edge Eik. As for the second concept of force compo-

sition, we define E[Pij ] = {(Qoa = Pij , Qob, c), o ∈
[1,#(E[Pij ])]} which is a subset of Ei. And the force im-

posed on Pij when considering different edges can be de-

noted as ∆Qoa. Thus we approximate ∆Pij with:

∆Pij =

#(E[Pij ])∑

o=1

∆Qoa (15)

Algorithm 2 Physics Inspired Optimization

Initialize: average Pi

while e decreases do

for all j do

get the subset E[Pij]

for all o do

calculate the force imposed on Qoa = Pij accord-

ing to Equation 12 13 14

end for

calculate ∆Pij by Equation 15, and update Pij

end for

calculate e at updated Pi

end while

As mentioned before, Equation 15 naturally obeys the

parallelogram law of force composition. In case of poten-

tial confusion, we clarify that both ∆Qoa and ∆Qka are

calculated according to Equation 14 (k is the index in Ei

and o is the index in Ei’s subset E[Pij ]). And to summarize,

PIO’s efficiency primarily comes from Equation 10’s O(1)
complexity while Equation 2’s is at least O(N) (NOB).

5. Experiments

5.1. LSUN Results

LSUN is a room layout estimation dataset consisted of

4000 training, 394 validation, and 1000 held-out testing

samples. Two standard metrics are used for evaluation: (1)

ecorner. Corner (conjunction) error is the Euclidean distance

between estimated coordinates of Pi and ground truth. Be-

cause of resolution diversity, ecorner is normalized by image

diagonal length. (2) epixel. By converting Pi into mask rep-

resentation like the ground truth in Fig 6, pixel error mea-

sures the ratio of mislabelled pixels to all pixels. (For epixel’s

label ambiguity problem, LSUN official evaluation codes

automatically maximize the overlap.)

For a large-scale evaluation, both metrics are averaged

over images. On validation set, official evaluation codes

provided by LSUN committee are used. Third-party evalu-

ation results on the test set are reported in Table 1. The pro-

posed method outperforms conventional method [11] and

FCN-based methods [17][3][27] on both metrics. Qualita-

tive results and failure cases on validation set are demon-

strated by Fig 6. Eight videos showing how PIO works are

provided in the supplementary material, with each one cor-

responding a sample in Fig 6, respectively.

Fig 6a shows a typical easy case, in which most edge pix-

els are visible and the feature map captures their locations

accurately. As video-a.wmv shows, the visualized edge map

gets twisted temporarily near 30th iteration because of force

composition and PIO finally aligns it with the true layout.

Fig 6bcd show some cases in which the feature maps fail

to locate edges accurately where the black circles are, lead-

ing to relatively higher ecorner. Reasons are diverse, such as

severe occlusion (b), insufficient feature map resolution (c),
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Method epixel (%) ecorner (%)

Hedau et al.(2009) [11] 24.23 15.48

Mallya et al.(2015) [17] 16.71 11.02

Dasgupta et al.(2016) [3] 10.63 8.20

Ren et al.(2016) [27] 7.57 5.23

Ours 5.29 3.84

Table 1. Quantitative results on LSUN test set.

Method epixel (%)

Hedau et al.(2009) [11] 21.20

Del Pero et al.(2013) [5] 12.70

Mallya et al.(2015) [17] 12.83

Dasgupta et al.(2016) [3] 9.73

Ren et al.(2016) [27] 8.67

Ours 6.60

Table 2. Quantitative results on Hedau test set. To clarify, [11][5]

are not trained on the large-scale dataset LSUN.

and misleading texture (d).

In Fig 6e, the room is no longer a strict box if we consider

the cabinet as a part of wall. Actually those separated wall-

ceiling edges are successfully captured by the feature map

and aligned by PIO. However, the annotation protocol takes

the cabinet as occlusion. Fig 6f shows a heavily-occluded

case. Semantic transfer allows the network to extrapolate

the existence of wall-floor edges behind the bed, but the

conjunction in the black circle is not accurately localized.

Although not 100% accurate, Fig 6a-f are regarded as

successful cases as the output topologies are right. Fig 6gh

are two typical failure cases in which a wrong topology pro-

duces the lowest energy. Fig 6g’s failure is caused by over-

fitting. The network extrapolates there are wall-floor edges

behind the bed, yet the annotation protocol does not. video-

g1.wmv shows the optimization procedure of the wrong

topology and video-g2.wmv shows that of the right topol-

ogy. Even though the latter leads to a lower error but the

algorithm outputs the former as it produces a lower en-

ergy. Fig 6h demonstrates another type of failures caused

by structure ambiguity. Again this scene is no longer a strict

box as some parts of the wall protrude outwards. The net-

work recognizes them as ceiling but the annotation protocol

does not, causing PIO to output a wrong topology.

5.2. Hedau Results

The Hedau dataset is presented by [11], being consisted

of 209 training samples and 105 testing samples. On Hedau

test set, We directly evaluate the model trained with LSUN

training set. As Fig 7 shows, this model extracts reliable

features across datasets. Consistent to the literature we

Figure 7. Qualitative results on Hedau test set.

NOB PIO

artpf (s) 35.41 1.79

epixel (%) 5.42 5.48

ecorner (%) 3.88 3.95

Table 3. Average running time per frame (artpf) comparison.

use pixel error as quantitative metric. We report better re-

sults than conventional methods like [11][5] and FCN-based

methods like [17][3][27] (Table 2). Overall pixel error

(6.60%) on Hedau test set is higher than that (5.29%) on

LSUN test set because the ground truth mask annotated by

Hedau dataset is more strict (typically shown by Fig 7j).

5.3. Hyper Parameters and Efficiency

(1) In Algorithm 2, wether e decreases is determined by

a threshold of 10−6. This threshold is related to the numer-

ical scale of e. During implementation, we use e = −CO

instead of e = exp(−CO) because of equivalence, and

e’s numerical scale is around −15 which has already been

shown in videos mentioned above. (2) Scaling factor α is

self-adaptive to ensure that the gradients’ (forces’) length

is between 1 and 3. This restricts the conjunction to move

only a little in one iteration, as the videos show. (3) The in-

fluence of window size ∆x (= ∆y) is evaluated on LSUN

validation set, and the quantitative results are demonstrated

by Fig 8. As the window size grows from 1 pixel to 10 pix-

els, both metrics show a trend of increase. Since PIO can

be regarded as an alignment algorithm, this is not surprising

because calculating gradients in a larger window size leads

to a weaker ability to accurately capture local structure.
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Figure 8. LSUN validation set error v.s. window size.

We evaluate average running time per frame on LSUN

validation set with NOB and PIO. NOA is not evaluated

because of intractability. The results are provided in Ta-

ble 3, showing that PIO brings dramatic speedup against

NOB without causing noticeable accuracy loss. Our codes

are all implemented with MATLAB, thus there is still much

head room for potential real-time applications.

5.4. Ablative Study of ST

In order to evaluate the impact of semantic transfer, we

use three standard edge prediction accuracy metrics as fol-

lows: F-score @ optimal dataset scale (ODS), F-score @

optimal image scale (OIS), average precision (AP). We con-

sider following settings: (A) directly train a VGG16-based

network for edge labelling. (B) train a VGG16-based net-

work with semantic transfer. (C) train a Resnet101-based

network with semantic transfer. All settings (including D-G

in next subsection) use same hyperparameters. As shown

by Table 4, setting B comes with a higher accuracy than

A (2.8%∆ODS), and setting C sees a larger improvement

(4.3%∆ODS). This indicates that both semantic transfer

and the introduction of Resnet101 bring improvements yet

the latter takes a relatively larger part.

5.5. Representation Learning Perspective

In order to further compare semantic transfer with tra-

ditional representation learning schemes, we consider these

settings (all on a VGG16-based network): (D) pre-train on

SUNRGBD for semantic segmentation, re-initialize the last

layer and fine-tune all parameters. (E) same as D except

that we only fine-tune parameters after layer 5b. (F) seman-

tic transfer and in stage three fine-tune all parameters (It is

same as B). (G) same as F except that we only fine-tune

parameters after layer 5b. As shown by Table 4, F’s perfor-

mance is slightly better than D (0.3%∆ODS, one may argue

this could be caused by additional parameters or stochas-

A B(F) C D E G

ODS 0.243 0.271 0.314 0.268 0.202 0.233

OIS 0.251 0.285 0.328 0.280 0.208 0.236

AP 0.135 0.151 0.184 0.148 0.091 0.098

Table 4. Ablative study of ST on LSUN validation set.

H I J K

epixel 11.28 6.31 5.75 5.48

ecorner 8.55 4.98 4.17 3.95

Table 5. Ablative study of PIO on LSUN validation set.

tic training) yet this margin gets more significant when we

freeze parameters before layer 5b (3.1%∆ODS comparing

G against E). This indicates that tuning a (properly initial-

ized) 37× 4 transfer layer is easier than re-training a (gaus-

sian initialized) classification layer (more obvious in the

frozen representation settings).

5.6. Ablative Study of PIO

With the classical pipeline (edge detection, vanishing

point voting, ray sampling), we extract on average 334 pro-

posals per image on LSUN validation set. Then with se-

mantic transfer features (setting C above), we consider these

settings: (H) pick the proposal that correlates to the features

the most. (I) do PIO with the best proposal. (J) do PIO

with top 10 best proposals and pick the one with the low-

est energy. (K) the PIO setting mentioned above (without

depending on those error-prone proposals generated from

low-level edge cues). I sees a higher accuracy than H (-

4.97%∆epixel), which is not surprising as PIO refines layout

proposals. Yet since I is restricted by the the proposal qual-

ity (which degenerates heavily in highly-occluded cases)

thus K outperforms I (-0.83%∆epixel). Augmenting with 10

proposals (J) sees a comparable performance with K. And

generally speaking, PIO is better than ranking proposals (-

5.80%∆epixel comparing K and H).

6. Conclusion

In this paper, we propose an alternative method for room

layout estimation. With a very deep semantic transfer FCN,

we extract reliable edge features under various circum-

stances. Meanwhile we develop PIO as a new inference

scheme, which is inspired by mechanics concepts. The

method’s effectiveness is illustrated by extensive quantita-

tive experiments on public datasets. Figures and videos are

also provided as intuitive demonstrations.
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